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Abstract—In this thesis we are addressing the challenge of
automatic fact veri�cation for Danish by developing the �rst
end-to-end solution for this task. Accordingly, we present a new
data set and a trained inference model for Danish-language
fact veri�cation. The data set consists of 3,395 textual claims,
labelled by human annotators based on the claims' ability
to be supported by evidence from Wikipedia. We assess the
presence of unintended signals in our data set by adapting a
neural probing method to the fact veri�cation task. Further,
we demonstrate our data set's feasibility for Danish fact veri-
�cation by developing an end-to-end machine learning system
that retrieves relevant evidence for a claim and predicts its
veracity. This system achieves a microf 1 of 58.6% and macro
f 1 of 53.4% on our test set. Ultimately, we deem that automatic
fact veri�cation for Danish is feasible, and that suf�cient tools
exist to allow future research to narrow the gap to English.

1. Introduction

Denmark is affected by digital misinformation furthered
by recent developments in digital technologies, such as
arti�cial intelligence and autonomous bots. In order to
investigate the in�uence of these technologies on Danish
society, a coalition of Danish members of parliament and
industry professionals united to form the SIRI Commission
in 2016 1. Their resulting report identi�es bots spreading
biased political news as a “serious threat to our democracy”
(SIRI-Kommissionen, 2019). To alleviate this threat, they
call for media to actively combat misinformation, e.g.
through fact checking.

Fact checking, however, requires considerable
manual labour and fact checkers are unable to keep up
with the ever-increasing amount of information that is
being published online (Soleimani et al., 2020). Therefore,
fact checking is now being considered a candidate for
automation (Augenstein et al., 2019; Derczynski and
Bontcheva, 2014) within the �eld of natural language
processing (NLP). So far, research into fact veri�cation
is largely centered around the English language, but
as SIRI-Kommissionen (2019) shows, the need for fact
veri�cation is also present in smaller languages, such as
Danish.

Some current fact veri�cation approaches make use
of machine learning models that are trained on a data
set of claims for which their veracity is known, e.g.
they may be labelled astrue or false . Models are
trained to predict these labels, sometimes while consulting
additionalevidence, with the aim of constructing a general
understanding of the task that can then be applied to claims
for which the label is unknown. Traditionally, training such
a model requires the existence of a suitable data set in the
target language. However, the availability of Danish NLP
resources is limited overall (Kirkedal et al., 2019) and to

1. https://www.dr.dk/nyheder/viden/tech/kommission-skal-undersoege-
kunstig-intelligens-ind�ydelse-paa-samfundet

our knowledge a fact veri�cation data set for Danish does
not yet exist.

Thus, in order to train a machine learning model
to fact-check, our �rst step is to create a Danish fact
veri�cation data set, composed of claims and supporting
or refuting evidence. This process requires considerable
human oversight and involvement, to ensure that claims
are annotated accurately. Then, we use our data set to
train a machine learning model to perform fact veri�cation
on Danish claims. While doing so, we also address the
challenge of retrieving evidence against which to verify a
given claim.

The machine learning models that are used within
fact veri�cation and NLP in general can be rather complex
due to their many independent parameters. For that reason
we spend a considerable part of our analysis on �nding the
optimal con�guration for our particular task and model.

Ultimately, we aim to identify and evaluate a
possible way to use modern NLP technologies for fact
veri�cation in Danish and lay a foundation for future
development in this area. To that end we present a fact
checking data set containing thousands of labelled Danish
claims and corresponding evidence. We also present a
functioning fact veri�cation system that demonstrates the
applicability of modern NLP technologies to the domain of
Danish fact veri�cation.

2. Related Works

As the need for automatic detection of false statements con-
tinues to grow (Derczynski and Bontcheva, 2014), several
large data sets for fact veri�cation have emerged. These data
sets generally provide statements, orclaims, of varying ve-
racity, sometimes accompanied by supporting or refutingev-
idence. The source of these claims are generally regarded as
either naturally-occurringor synthetic. Naturally-occurring
claims are not speci�cally created for fact veri�cation and
can be found, for example, on social media. Claims in
social media, however, are generally not accompanied by
veracity labels and evidence. This limits their usefulness
for automatic fact veri�cation. Fact-checkers, on the other
hand, work on �nding and verifying claims (Vlachos and
Riedel, 2014), thereby providing veracity labels. The ex-
ample shown in Figure 1 (see page 4) checks the claim
“Bill Gates already has his own CoVid-19 vaccine ready
for you, and here is the patent”. The claim, that occurred
in a number of Facebook posts, is assigned a label (false)
and an explanation for the verdict is given2.

Researchers are now looking towards fact-checking
sites as a potential source for naturally-occurring fact
veri�cation data sets. As of 2019, the largest data set
of this kind is MultiFC (Augenstein et al., 2019), which
collects over 30,000 claims from 26 English-language fact

2. https://www.mm.dk/tjekdet/artikel/afsloerer-dokument-at-
covid-19-vaccinen-allerede-�ndes-nej-coronaskeptikere-misforstaar-
patentansoegning
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Figure 1. Example of a fact-checked claim from TjekDet.

checking websites. In order to reach this number of claims,
Augenstein et al. (2019) make a compromise between
quantity and uniformity. By including 26 different sites,
they source claims with up to 40 different veracity labels,
from “true” and “mostly false” to “a little baloney” and
“4 Pinocchios”. Additionally, their methodology limits the
size of their data set to the number of fact-checked claims
on the included sites.

To overcome this limitation, Thorne et al. (2018) create
claims synthetically. By authoring claims speci�cally with
the purpose of fact veri�cation, they are able to control the
size of the data set and the number of labels. In the section
below, we present the FEVER data set as well as outline the
FEVER shared task which builds on said data set. Following
this, we present a selected handful of FEVER submissions,
and which methods they use to address the task.

2.1. FEVER Data Set

The original FEVER data set presented in Thorne
et al. (2018) comprises a total of 185,445 claims cre-
ated from approximately 50,000 popular Wikipedia arti-
cles and annotated as eitherSUPPORTS, REFUTESor
NOTENOUGHINFO. Additionally, claims that are labelled
SUPPORTSand REFUTESalso come with the evidence
against which this judgement has been made. Thorne et al.
(2018) create this data set in two stages using 50 annota-
tors: First generating claims from Wikipedia articles, then
labelling them against evidence from Wikipedia.

The claim generation stage entails providing annota-
tors with a randomly sampled sentence from the introductory
section of an English Wikipedia article and asking them to
create claims about the article's entity, i.e. its subject. In
addition to basing their claims on the provided sentence
alone, annotators are also given the choice to use informa-
tion from hyperlinked articles to allow for more complex
claims (Thorne et al., 2018).

Annotators are also asked to createmutations of

these claims by, for example, negating, generalising or re-
placing part of the claim. This is done to introduce refutable
and non-veri�able claims into the data set (Thorne et al.,
2018).

In the second stage, Thorne et al. (2018) ask an-
notators to label the previously created claims as either
SUPPORTS, REFUTESor NOTENOUGHINFO. For the �rst
two labels, annotators also mark the sentences they use as
evidence for their decision. Once again, the annotators have
access to articles hyperlinked in the entity's article as well.
Figure 2 shows annotated examples from the FEVER data
set. Note that for the sake of simplicity some information
has been omitted from the �gure. The original data also
includes which parts of the evidence speci�cally supports
or refutes a claim as well as whether a claim is veri�able
or not.

ID: 159923
Claim: Melisandre wrote the third novel in A Song of

Ice and Fire.
[wiki/Melisandre] : Melisandre of Asshai is a

�ctional character in the A Song of Ice and Fire se-
ries of fantasy novels by American author George
R. R. Martin [. . . ]

Verdict: Refuted

ID: 40360
Claim: Me Before You has Emilia Clarke in the cast.
[wiki/Me_Before_You_(film)] : Me Before

You is a 2016 British-American romantic drama
�lm directed by Thea Sharrock as her directorial
debut and adapted by English author Jojo Moyes
from her 2012 novel of the same name. The �lm
stars Emilia Clarke, Sam Cla�in, [. . . ]

Verdict: Supported

ID: 52213
Claim: A dog has written for Doctor Who.
[null] : Null
Verdict: Not Enough Info

Figure 2. Example of claims from the FEVER data set.

Thorne et al. (2018) segment the labelled data set into
multiple subsets for training, development and testing, with
the �rst retaining a majority of the claims at a size of
145,449.

2.2. FEVER Shared Task

Following the publication of the FEVER data set, Thorne
et al. (2019) publish the FEVERshared task. This task
challenges participants to develop a system that is capable
of retrieving relevant textual evidence (from Wikipedia) for
the human-generated claims in the FEVER data set (Thorne
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et al., 2018) and predict their veracity against that evidence.
As a conclusive step, any system submitted to this task must
assign a label to each claim:SUPPORTED, REFUTEDor
NOTENOUGHINFO. Participants are free to decide how to
best retrieve evidence and predict labels. Submissions are
measured not only on their label accuracy, but also on their
ability to retrieve the expected evidence, which together
constitute the FEVER score (Thorne et al., 2019).

2.3. Submissions to the FEVER Shared Task

In their paper, Thorne et al. (2019) highlight the methods
used by some of the most successful task submissions,
and report multiple teams using a multi-step approach to
evidence selections. An example of a multi-step approach,
Nie et al. (2019) present theThree-Phase Procedure
which consists of a document retrieval system, sentence
retrieval and �nally claim veri�cation. For document
retrieval, Nie et al. (2019) and Yoneda et al. (2019) extract
keywords from each claim, and use those keywords to
query the body of articles for matching evidence. Several
participants report using combinations of named entities,
noun phrases and capitalised expressions from the claim to
create keywords for querying suitable information retrieval
(Thorne et al., 2019). However, Yoneda et al. (2019)
�nd that the architecture of a standard claim frequently
includes a mention of the entity's title. Hence, extracting
noun phrases or named entities could aid in retrieving
relevant sentences for a claim as they may represent
an entity. They also underline issues in co-referencing
claims, which refer to their entity asit, they, sheetc., rather
than using the actual title of the entity the pronouns refer to.

A more naive approach assumes that a keyword represents
any span of the text which can eventually be matched with
a piece of text from a Wikipedia article (Nie et al., 2019).
As mentioned, a popular method includes extracting noun
phrases from claims. Hanselowski et al. (2019) reason one
could “consider every noun phrase as a potential entity
mention”, but also add that they achieve better results
when combining it with a heuristic to also include other
categories of words in e.g. movie or song titles. Otto
(2019) also uses “noun chunks” from claims for querying
an index. However, in this approach the noun phrases are
also paired with a Named Entity Recognition (NER) sub
task. Similarly, Malon (2019) report that using NER in a
document retrieval step ultimately provides a “signi�cant
boost” to the �nal results.

For the �nal step, claim veri�cation, submissions
exhibit a variety of solutions, albeit united in their reliance
on both word embeddings to transform the textual claim-
evidence pairs and some inference model to ultimately
evaluate veracity.

For fact veri�cation tasks such as FEVER, Soleimani
et al. (2020) suggest using BERT as their language model.
In their work, they implement BERT for sentence selection
by �rst retrieving �ve potential evidence documents and

then apply one of two strategies: The �rst is a point-wise
strategy, where every piece of potential evidence is directly
classi�ed as evidence ornon-evidence(Soleimani et al.,
2020). The second strategy is to pair potential positive
evidence together withnegative samples, and then compare
the contents to appropriately classify evidence (Soleimani
et al., 2020). Similarly, Stammbach and Neumann (2019)
also use BERT for sentence selection, but suggests atwo-
hop evidence process inspired by the work reported by Nie
et al. (2019). Stammbach and Neumann (2019) argue that
using BERT speci�cally for sentence selection, enables a
theoretical ability to “retrieve most of the relevant evidence
in the FEVER dataset”. While Soleimani et al. (2020) do
not investigate using BERT in an end-to-end framework,
but merely suggest it for future research, Stammbach and
Neumann (2019) implement BERT for claim veri�cation
as well. When using the BERT model Stammbach and
Neumann (2019) report 71.5% label accuracy. However,
when excluding non-veri�able claims, label accuracy even
increases to 85.3% (Stammbach and Neumann, 2019).
They conclude that BERT seems to struggle in classifying
NOTENOUGHINFOclaims, stating that these are “the most
problematic one to predict correctly” (Stammbach and
Neumann, 2019). Overall, researchers show promising
results when using BERT for both sentence selection and
claim veri�cation steps of the FEVER task (Stammbach
and Neumann, 2019; Soleimani et al., 2020).

2.4. Bidirectional Encoder Representations from
Transformers (BERT)

BERT is a language representation model using both
pre-training and �ne-tuning for natural language processing
tasks (Devlin et al., 2018). It is trained on a set of two tasks:
Masked Language Modeling(MLM) and Next Sentence
Prediction (NSP). The MLM task helps the model train
in deep bidirectional representations of some input tokens,
rather than a left-to-right or right-to-left representation of
a sequence. In MLM training 15% of (randomly chosen)
tokens are replaced with[MASK] tokens, which the model
must then predict (Devlin et al., 2018). The second task,
NSP, trains BERT on “understanding the relationship
between two sentences” which Devlin et al. (2018) argue
is not already captured by language modelling. Both tasks
are performed on BookCorpus and Wikipedia3. Ultimately,
these tasks make BERT's “deep bidirectional” nature able
to contribute in tackling a “broad set of NLP tasks” (Devlin
et al., 2018).

Originally written for TensorFlow, BERT has
since been implemented for PyTorch as part of
Huggingface Transformers (Wolf et al., 2019). They
offer several models with task-speci�c overhead,
including but not limited to: BertForSequenceClassi�cation,
BertForMultipleChoice, BertForQuestionAnswering and
BertForTokenClassi�cation4. All tasks require additional

3. https://github.com/google-research/bert
4. https://huggingface.co/transformers/modeldoc/bert.html
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�ne-tuning to the speci�c domain, but could potentially be
applied to a claim veri�cation task.

BERT models are available in multiple variants,
differing in size, e.g.baseand large, case-sensitivity, i.e.
casedand uncased, and pre-training language. In addition
to pre-training on English only, a multilingual version
pre-trained on up to 104 languages, including Danish, is
also available5.

While the original English-trained BERT is a state-
of-the-art language processing model (Devlin et al.,
2018), we see R̈onnqvist et al. (2019) test the quality of
multilingual BERT (mBERT) on a handful of tasks which
differ in complexity and report mixed results. Speci�cally,
these tasks are tested on English, German and Nordic
languages (including Danish), where Rönnqvist et al.
(2019) write:

“We found that the multilingual model notably lags
behind the available monolingual models and the
gap opens as the complexity of the task increases.”

In a suggested reason behind these results, Rönnqvist et al.
(2019) argue that while monolingual BERT is trained on a
100% English corpus, any multi-lingual implementation of
BERT will be trained on less that 1% of a corpus, assuming
all languages have equal representation in a given corpus.

While Rönnqvist et al. (2019) remain critical to the
quality of mBERT, others report mBERT “doing well” when
trying tasks using zero-shot cross-lingual transfers (Pires
et al., 2019; Wu and Dredze, 2019). The concept of a zero-
shot cross-lingual transfer concerns training a model in a
source language (most often a high resource language), and
then transfer to a target language (Wu and Dredze, 2019).
Hence, zero-shot transfers test a model's ability to generalise
across languages, as it speci�cally trains models on data
from one language and evaluates them in another (Pires
et al., 2019). Wu and Dredze (2019) execute �ve different
tasks to test the quality of mBERT in a zero-shot setting.
The tasks include: Document classi�cation, natural language
inference, named entity recognition, part-of-speech tagging,
and dependency parsing. In their results Wu and Dredze
(2019) report that mBERT “[. . . ] effectively learns a good
multilingual representation” in the aforementioned tasks.
Pires et al. (2019) also report encouraging results using
mBERT for zero-shot, and state that the model is robust
in its cross-lingual generalisations “[. . . ] without being ex-
plicitly trained for it.”. In conclusion, the results from Wu
and Dredze (2019) and Pires et al. (2019) show potential
in implementing a zero-shot cross-lingual transfer, where
Rönnqvist et al. (2019) show limitations in the capabilities
of the mBERT model.

2.5. Statistical Cues in Data Sets

BERT has achieved state-of-the-art results in a number of
NLP tasks and even exceeded human baselines in some
(Devlin et al., 2018). Yet, when Niven and Kao (2019)

5. https://github.com/google-research/bert

use BERT in the Argument Reasoning Comprehension
Task (ARCT) (Habernal et al., 2018) and �nd near-human
performance, they question the legitimacy of their results,
as the task requires additional world knowledge that the
model was not provided with. Niven and Kao (2019)
examine what BERT had actually learned about the task
and �nd that “BERT's surprising performance can be
entirely accounted for in terms of exploiting spurious
statistical cues”(Niven and Kao, 2019). Correspondingly,
Schuster et al. (2020), who use BERT to identify cues in
FEVER, �nd that they are able to achieve high classi�er
accuracy, even when completely disregarding evidence.

The effect that Niven and Kao (2019) and Schuster
et al. (2020) demonstrate, has also been dubbed theClever
Hans Effect(Heinzerling, 2019) and occurs when models
learn not from the intended data, but from unintentional
signals hidden within. To counter this effect, Heinzerling
(2019) proposes performing data set ablations, in which
data sets are intentionally distorted to assess the impact on
model performance. We see another attempt to limit the
presence of unintentional cues in FEVER, where annotators
are asked to refrain from creating simple negations, e.g. by
using “not” (Thorne et al., 2018).

Niven and Kao (2019) present an analytical method
to determine the presence of statistical cues in a data set.
They consider uni- and bigrams (i.e. one and two-word
phrases) in the ARCT data and calculate aproductivityand
coveragevalue for each. They de�ne the productivity of a
cue as“the proportion of applicable data points for which
[the cue] predicts the correct answer”and a cue's coverage
as “the proportion of applicable cases over the total
number of data points”(Niven and Kao, 2019). Based on
these values they identify “not” as a strong cue that predicts
the right answer 61% of the time (productivity), while
occurring in 61% of all data points (coverage). Niven and
Kao (2019) also demonstrate that BERT's performance on
ARCT falls signi�cantly when strong cues are eliminated
from the data.

Schuster et al. (2020) and Niven and Kao (2019)
demonstrate the need for awareness of potential statistical
cues for those creating as well as those consuming data
sets and provide suggestions on how to detect them, such
as probing statistical cues and data ablations.

3. Data Set Creation

According to the Danish Language Council (Dansk
Sprognævn), the absence of large-scale data sets in Danish
currently presents one of the greatest challenges to the
development of Danish NLP technologies (Kirchmeier et al.,
2019). At the same time, and perhaps as a result, the number
of models and tools for NLP tasks in Danish still remains
relatively limited (Kirkedal et al., 2019). The same is true
for the Danish fact veri�cation task that we are targeting.
In the absence of meaningful quantities of suitable data, we
must at this time consider the creation of a suf�ciently-sized
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data set a prerequisite for the development of a Danish fact
veri�cation model.

3.1. Data Collection Work�ow for Wikipedia

Our approach to creating a data set of suitable size includes
splitting the work�ow into smaller manageable tasks (see
Figure 3). Between each step we store the current state of the
data to best track and manage its life cycle. We decide to use
Wikipedia as a single source for claim generation. Hence,
we start by parsing the data from Wikipedia to extract only
the necessary information. Based on this we generate a
claim, which is then transformed into multiple mutations.
Later on, we construct dictionaries for each claim. Finally,
we annotate claims against evidence, labelling each claim as
either Supported , Refuted or NotEnoughInfo . We
present each step in the work�ow followed by examples of
the claim throughout the process.

Figure 3. Representation over the data creation work�ow.

3.1.1. Parsing.The �rst step is to extract entities and their
respective abstracts from a Wikipedia page. We do so by
parsing the latest Danish Wikipedia dump6 as of 13 February
2020. We are able to reliably extract the article text and
hyperlinks using WikiExtractor7. These are fed into our
parsing tool where for each entity we extract the abstract and
all hyperlinks within. The resulting abstracts occasionally
contain encoding errors that we �x using ftfy (Speer, 2019).
While this correctly encodes variants of Latin characters
such asø, ä, é, etc., it breaks text in non-Latin alphabets.
Since we are primarily focused on Danish, we consider this
trade-off permissible.

For example, the Wikipedia article for the Danish
movieIt don't mean a thing8 is reduced to the data shown in
Figure 4. It is worth noting that for the purpose of illustration
we show a very compact example here. Abstracts can stretch
over many sentences and include at times over a dozen
linked entities.

Entity: [wiki/It_don't_mean_a_thing]
Abstract: It don't mean a thing er en animations�lm

instrueret af Flemming Quist Møller efter eget
manuskript.

Linked Entities: [animationsfilm,
Flemming_Quist_Møller, manuskript]

Figure 4. Parsing example.

3.1.2. Claim Generation. The second step in the data
collection work�ow is to generate claims. To create one
claim, we randomly sample one entity and its abstract from
the set of all Danish Wikipedia pages. Based on these, a
claim author composes one claim which must be supported
by the abstract and regard the entity. Claims are composed
exclusively based on knowledge retrieved from the abstract.
In Figure 5 we present an example output that is saved to
a �le in this step.

Claim: It don't mean a thing er en animations�lm
instrueret af Flemming Quist Møller.

Entity: [wiki/It_don't_mean_a_thing]
Abstract: It don't mean a thing er en animations�lm

instrueret af Flemming Quist Møller efter eget
manuskript.

Linked Entities: [animationsfilm,
Flemming_Quist_Møller, manuskript]

Figure 5. Claim generation example.

6. https://dumps.wikimedia.org/dawiki/latest/
7. https://github.com/attardi/wikiextractor
8. https://da.wikipedia.org/wiki/Itdon%27t mean a thing

Page 7 of 26



3.1.3. Generating Mutations. In the third step of data
creation, a claim author must mutate the claims generated
in the preceding step. In contrast to the previous claim
construction, authors are now allowed to include world
knowledge. The claim author compose a set of mutations of
the original claim, without considerations towards its ability
to be supported by evidence. When composing mutations the
claim author is not presented with evidence, but merely the
original claim and the entity it concerns. During this step,
we apply the rules for mutations presented by Thorne et al.
(2018), with the important note that any mutation must still
concern the source entity. In Figure 6 we present a mutation
of the the claim presented in Figure 5 (see page 7).

Claim: It don't mean a thing er instrueret af en dansk
mand, som hedder Flemming.

Entity: [wiki/It_don't_mean_a_thing]
Abstract: It don't mean a thing er en animations�lm

instrueret af Flemming Quist Møller efter eget
manuskript.

Linked Entities: [animationsfilm,
Flemming_Quist_Møller, manuskript]

Figure 6. Mutation example.

3.1.4. Dictionary. Up to this point, the data set of mutated
claims contains references to the linked entities, but the
entities alone are of little value for annotation. Therefore,
this step consists of looking up the linked entities in the
parsed data and adding their abstracts as evidence to the
mutated claims. The result is shown in Figure 7.

We recognise that the inclusion of a dictionary is
necessary for allowing complexity in claims while also
limiting the amount of world knowledge introduced during
annotation.

Claim: It don't mean a thing er instrueret af en dansk
mand, som hedder Flemming.

Entity: [wiki/It_don't_mean_a_thing]
Abstract: It don't mean a thing er en animations�lm

instrueret af Flemming Quist Møller efter eget
manuskript.

Dictionary: (Entity : Flemming Quist Møller,
Abstract : Flemming Oluf Quist Møller (fø8dt
19. maj 1942 i Taarbæk) er en dansk musiker,
tegner, �lmarbejder og forfatter. Han spiller i
musikgruppen Bazaar, sammen med Peter Bastian
og Anders Koppel.), (Entity : manuskript,
Abstract : Manuskript (latin “manu scriptus”,
“skrevet i h	anden”) er et dokument; h	andskrevet,
skrevet p	a skrivemaskine eller p	a computer.)

Figure 7. Dictionary example.

3.1.5. Annotation. While annotating the generated claims
against the saved evidence, we disallow world knowledge,
i.e. knowledge that cannot be found in the presented evi-
dence, from in�uencing annotation. Common sense, how-
ever, is permitted. For example, a Wikipedia article states:

Danish: Rimsø-stenen er en runesten.
English translation: The Rimsø Stone is a rune

stone.
A claim could suggest the Rimsø Stone to be a tombstone.
An annotator might know that rune stones were in fact
used as tombstones, yet without further evidence the claim
can not be supported based on common sense alone.
However, if the evidence included the de�nition of a rune
stone, an annotator could label the claim-evidence pair as
Supported .

Additionally, we consider an annotator's general
understanding of words and categories as common
sense. This includes understanding that some things,
such as geographic locations, are mutually exclusive: If a
physical location is in Denmark, it cannot also be in Norway.

During annotation, we meet a peculiar gradient in the
nature of the Danish language. For example:

Danish: David Beckham er en engelsk fodbold-
spiller.

English translation: David Beckham is an En-
glish football player.

Here an annotator might question the meaning of being
English. Does being an English football player imply
that one played football in England or that one is born
in England and is now a football player? This example
supports the idea of having the annotator use common
sense to label a claim-evidence pair. A claim like this might
be read differently from annotator to annotator, hence we
ask whether the annotator is convinced by the evidence,
and to label accordingly.

A similar situation would arise if a claim alleged
David Beckham to be an athlete or a chef. We consider it
permissible common sense that football players are athletes
and would require no further evidence to support that claim.
However, we also allow annotators to refute a claim if it is
contradicted by the evidence, such as David Beckham being
a football player, instead of a chef. Where (Thorne et al.,
2018) rightfully argue that a person can possess multiple
jobs, and that having worked as a football player does not
exclude one from also working as a chef, we base our
decision on the assumption that Wikipedia editors follow
the Gricean Maxim of Quantity (Geis et al., 1976) and
provide the relevant information in its entirety. We apply
the same logic to citizenship. Therefore, we determine
that if a Wikipedia article states a person's profession or
citizenship, annotators can assume all relevant professions
or citizenship's to be mentioned.

With the guidelines above, we annotate all claim-evidence
pairs against a dictionary. The annotator must log whether
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a dictionary entry was used, such that it can be stored
with the source evidence for a given claim. In Figure 8
we present the annotated example for Flemming Quist
Møller as well as annotations for each other label. The
claim suggests that Flemming is a Danish man. This claim
could be supported with the use of the dictionary, as the
dictionary entry on Flemming Quist Møller explicitly states
his citizenship.

Claim: It don't mean a thing er instrueret af en dansk
mand, som hedder Flemming.

Entity: [wiki/It_don't_mean_a_thing]
Evidence: It don't mean a thing er en animations�lm

instrueret af Flemming Quist Møller efter eget
manuskript.

Entity: [wiki/Flemming_Quist_Møller]
Evidence: Flemming Oluf Quist Møller (født 19. maj

1942 i Taarbæk) er en dansk musiker, tegner, �l-
marbejder og forfatter. Han spiller i musikgruppen
Bazaar, sammen med Peter Bastian og Anders
Koppel.

Label: Supported

Claim: Jødisk Informationscenter blev oprettet efter
afslutningen p	a 2. verdenskrig.

Entity: [Jødisk_Informationscenter]
Evidence: Null
Label: Not Enough Info

Claim: Suicide Squad er en superhelte�lm instrueret
af Margot Robbie.

Entity: [wiki/Suicide_Squad]
Evidence: Suicide Squad er en amerikansk superhelt-

�lm fra 2016. Filmen er skrevet og instrueret af
David Ayer, og har Will Smith, Jared Leto, Margot
Robbie, Joel Kinnaman, Jai Courtney, Cara Delev-
ingne og Viola Davis i hovedrollerne.

Label: Refuted

Figure 8. Example of claims labelledSupported , NotEnoughInfo and
Refuted .

3.1.6. Data Creation Tools.Our data collection strategy
is supported by simple command line tools9. We present a
screenshot of the annotation tool in Figure 9. We designed
this process with the objective of enabling transparency and
iterative work�ows. The fact that the individual work�ows
are disjoint enables us to gather data in batches, allowing
us to start using the data before it has been collected in full
(see Figure 3, page 7). Additionally, we can manually access
the data between each step to review quality and assist in
debugging.

9. https://github.com/HenriSchulte/Danish-Fact-Veri�cation

Figure 9. Screenshot of Annotation Tool in the Terminal.

3.1.7. Inter-Annotator Agreement. Before annotating all
data entries, we perform an inter-annotator agreement to
ensure alignment in annotation methods and a shared un-
derstanding of what making reasonable assumptions using
common sense entails. We useFleiss � -score to measure
performance (Fleiss, 1971). We each label 100 randomly
sampled claims, without conferring with each other. This
results in a Fleiss� -score of 0.75, which signi�es a suf-
�cient level of agreement. A� -score between 0.61-0.80 is
considered substantial for an annotation task (Landis and
Koch, 1977, p. 165).

3.2. General Considerations

We are largely following the data collection procedure
outlined by Thorne et al. (2018) to maintain a certain,
albeit debatable, degree of comparability. This means that
we retain the structure of claim-evidence pairs labelled as
either Supported , Refuted or NotEnoughInfo . We
also continue using Wikipedia as a primary data source for
evidence and claim generation. While there certainly exist
downsides to using the Danish Wikipedia, its relatively large
size, high accessibility and structured format lends itself
well to this particular task.

In some areas, however, we decide to divert from
the data set creation process of FEVER. Some of these
differences stem from the fact that our team of annotators is
limited to the two authors while Thorne et al. (2018) were
able to use a team of 50 annotators. While this certainly
adds limitations on our part, we also argue that it relieves
us from putting greater emphasis on designing an annota-
tion process that is scalable and user-friendly. Therefore,
we develop simple text-based command line tools instead
of using the existing FEVER Annotation Platform10. For

10. https://github.com/awslabs/fever/tree/master/fever-annotations-
platform
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the same reason, we are unable to replicate Thorne et al.
(2018)'s use of 5-way agreement and super-annotators to
strengthen labelling. Regardless, like FEVER we useFleiss
� -score to measure inter-annotator agreement (see Section
3.1.7).

Additionally, there are minor differences in our
annotation strategy. While annotators in FEVER's claim
labelling task were allowed to add additional evidence
from Wikipedia (Thorne et al., 2018), our annotation is
limited to the evidence in the entity's abstract and the
abstract of hyperlinked entities within. Further, in our
system, annotators specify which abstracts are contributing
to their decision, not which speci�c sentences do. These
simpli�cations allow us to move forward with the task
despite the small number of annotators.

That being said, we do retain other ideas of Thorne
et al. (2018) by basing our data set on purely synthetic
data and generally disregarding temporality. However, we
do acknowledge that the manufactured, synthetic nature
of our data might introduce latent signals resulting in a
potentially biased model. For this reason we analyse the
data set for potential bias in Section 5.4.3. In addition,
our annotation strategy is also time-agnostic. This means
that claims that are supported at some point are considered
supported, even if they are no longer accurate at the current
time. For example, the claim“Lars Løkke Rasmussen is the
Prime Minister of Denmark.”can be supported against the
evidence“Lars Løkke Rasmussen was Prime Minister of
Denmark from 2015-2019.”even though this is no longer
the case today.

As we are basing our data on the Danish Wikipedia,
we need to be aware of areas in which it differs from its
English counterpart, such as size, quality and composition.
After parsing the Danish Wikipedia, we are left with
256,048 articles, many of which are not much longer
than a few sentences. This is exacerbated by the fact
that some articles are not actually authored by humans
but automatically generated from external databases. For
example, the abstract shown in Figure 4 (see page 7) was
written by a bot, as indicated by a banner in the top of the
page as shown in Figure 1011. We decide not to exclude
these cases, as the presence of machine-generated text in the
data mirrors the current reality (SIRI-Kommissionen, 2019).
We also note a lack of diversity in the Danish Wikipedia.
A few categories alone make up a considerable part,
speci�cally sports, movies and administrative divisions.

Figure 10. Banner on a Wikipedia page indicating that the article has been
authored by a bot.

11. https://da.wikipedia.org/wiki/Itdon%27t mean a thing

3.3. Using FEVER Data

As a result of following a similar generation process, our
data set bears some similarity to FEVER. Consequently, we
decided to explore the option of machine-translating English
FEVER data (Thorne et al., 2018) into Danish in addition
to generating data from Danish Wikipedia. For this purpose
we use the Microsoft Translator Text API12. Their machine
translation system has been shown to achieve human parity
in some Chinese to English news translation tasks (Hassan
et al., 2018). While Danish is a rather low-resource language
when compared to Chinese, we consider the quality of
English-to-Danish translations to be suf�cient, even if not
�awless. At times the system still fails at recognising named
entities. In the example shown in Figure 11 the name of
actress Claire Danes is translated asClaire danskere, as her
last name is a homograph of the English name for the people
of Denmark and is translated as such.

FEVER original: The series stars Claire Danes as
Carrie Mathison, a Central Intelligence Agency
of�cer with bipolar disorder.

Danish translation: Serien stjerner Claire danskere
som Carrie Mathison, en Central Intelligence
Agency of�cer med bipolar lidelse.

Figure 11. Example of a poor translation.

Due to the uncertain data quality, we have elected not to in-
clude translations of English FEVER claims and evidence in
our own data set but instead perform separate experiments.

3.4. Data Set Statistics

During our annotation process, we have generated a total of
3,395 labelled claims with corresponding evidence from the
Danish Wikipedia. Most claims that are veri�able (labelled
either Supported or Refuted ) can be veri�ed based
on their source entities' articles alone, however, 19.29%
of veri�able claims make use of one or more dictionary
entries, i.e. additional evidence from linked articles. We have
divided these claims into a training, development and test
set, as seen in Table 1. The data set is available on Github13.

TABLE 1. CLASS DISTRIBUTION OF DATA SETS.

Data set Refuted Supported NEI

train 839 1186 350

dev 119 171 52

test 245 333 100

12. https://www.microsoft.com/en-us/translator/business/translator-api/
13. https://github.com/HenriSchulte/Danish-Fact-Veri�cation
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Thorne et al. (2018) ensure that each source entity only
appears in one of the three splits, presumably to guarantee
that the development and test splits include completely
unseen data. We have also adopted this standard for our
data set.

Additionally, we would have preferred a balanced
development and test data set. The small size of our
NotEnoughInfo class, however, makes such an approach
unsuitable in our case. Instead, we explore methods for
compensating for the imbalanced training data in Section
5.1.1.

4. Fact Veri�cation: Technical Approach

In addition to our Danish claim veri�cation data set, we
also present a claim veri�cation system that is trained and
tested on this data. This system is comprised of two major
parts, the evidence retrieval system and the classi�er, which
can be executed in a pipeline con�guration14.

4.1. Evidence Retrieval System

Finding relevant evidence is an essential element of fact-
checking a claim, as human fact-checkers require evidence
on which to base their judgement. Thus, we apply the
same principle to non-human fact-checkers as well. We
develop an evidence retrieval system that automates this
process by using Apache Lucene15 to query the parsed
Wikipedia dump for relevant evidence. We do so in two
consecutive steps, �rst selecting article abstracts and from
those selecting relevant sentences as evidence.

To begin, we construct a search index over the article
abstracts in the parsed Wikipedia dump that we also use
for data generation. Each abstract is considered a separate
documentfor the purpose of indexing. We restrict ourselves
to only using the abstracts of articles to ensure consistency
between the original evidence and the retrieved one. This
way, retrieved evidence originates from the same superset
of sentences as the original evidence does.

After building the index, we prepare the search
query. We initially query the abstracts with the entire claim,
however, we �nd that this returns many results that contain
similar sentences, but are otherwise entirely unrelated. For
example, the claim “Yosemite National Park is located in
northern Kentucky” might result in the very similar, but
entirely unrelated evidence “Yellowstone National Park
is located in northern Wyoming”. Some contestants in
the FEVER Shared Task extract noun phrases from the
claim and use those to select relevant documents (Thorne
et al., 2019; Hanselowski et al., 2019). We imitate this
approach, albeit in the most simple fashion, by extracting

14. https://github.com/HenriSchulte/Danish-Fact-Veri�cation
15. https://lucene.apache.org/

noun phrases from the claim using Apache OpenNLP16

and using only those to query the abstracts. We �nd this to
produce more reliable results than querying with the entire
claim, as it removes noise introduced by words that are not
central to the claim's meaning.

From these results we continue with a certain number of
abstracts,k, that is subject to future tweaks. At this point
we have retrieved the abstracts of those articles that contain
the noun phrases in the claim. The next step is to select the
relevant sentences from these abstracts. For this purpose
we use OpenNLP to separate the abstracts into individual
sentences and build a search index over all sentences. We
�nd that OpenNLP's Danish Sentence Dector Model17 is
able to reliably split evidence sentences in our data.

Instead of indexing over articles, the second search
index now contains all sentences from thek most relevant
abstracts. We query this index with the entire claim to
make sure that we retrieve the most similar sentences. The
�rst l sentences are then added as evidence to the claim. As
with the number of abstracts,k, the number of sentences,
l , is determined through experiments in Section 5.2.

It is worth noting that while we use the same source
as in our previous data generation process, we do not aim
for parity in evidence retrieval. During data generation,
entire abstracts are added as evidence, regardless of whether
all sentences are required to annotate the claim. Here, we
instead try to �lter irrelevant sentences to avoid including
irrelevant sentences in the retrieved evidence.

4.2. Fact Veri�cation Classi�er

Based on mBERT (Devlin et al., 2018), our classi�er makes
use of an extensively pre-trained, multilingual model that
also supports Danish. To then adapt the pre-trained model
to our claim veri�cation task, we add a step of domain-
speci�c training, so-called �ne-tuning.

4.2.1. Filling Evidence for NEI Claims. Our annotation
process does not produce any evidence for claims that are
labeledNotEnoughInfo , as they are not veri�able against
any evidence. Using these claims directly for �ne-tuning the
model would not allow the model to learn how to actually
classify non-veri�able claims in a general sense. Thorne
et al. (2018) address this issue by either sampling a sentence
from the nearest page or randomly from Wikipedia. As our
evidence is structured slightly differently, we elect to add the
entire abstract of the claim's source article as evidence. This
method results in evidence that is similar to that of veri�able
claims, minimising the chance that its label is given away
by anything but the meaning of the evidence.

4.2.2. Balancing Classes.Before using our training data
set on the model, we take a number of preparatory and

16. https://opennlp.apache.org/
17. http://opennlp.sourceforge.net/models-1.5/
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pre-processing steps, beginning with class balancing. We
add this step to ensure that the model is equally trained
on all three classes, even though these classes appear in the
training data with greatly varying frequency. We implement
two separate balancing strategies: Oversampling and class
weights. When oversampling, some entries from the smaller
classes, in our caseNotEnoughInfo and Refuted are
duplicated to produce an evenly balanced data set. This
transforms the size of our training data set from 2,375 entries
to 3,558 with all three classes being represented evenly.

The other strategy is to use class weights to increase
the misclassi�cation cost for the model when failing to
correctly predict the label for an entry of a smaller class. We
do this by calculating weights equivalent to the frequency
of the class in the training data (before oversampling) and
use those weights to amplify loss when misclassifying un-
derrepresented instances. Both approaches are established
strategies for dealing with imbalanced data sets within ma-
chine learning generally (Chawla, 2010; Ling and Sheng,
2008). We investigate their speci�c effects on our classi�er
in Section 5.1.1.

4.2.3. Generating Model Inputs. The inference model
at the core of our classi�er does not process the claim
and evidence in its current, textual form. Therefore, we
transform these into numerical inputs �rst. Speci�cally,
we base our classi�er onBertForSequenceClassi�cation
from Huggingface Transformers (Wolf et al., 2019), which
serves a pre-trained model withinput ids , labels ,
attention masks and token type ids .

As the pre-trained model we choose
bert-base-multilingual-cased as we hope
to bene�t from both its multilingual and its cased attributes.
Most important to our task, this model is pre-trained to
be multi-lingual on 104 languages including Danish18,
which absolves us from having to �ne-tune BERT for a
new language, rather than just a new task. Further, we
choose the cased model, as we require the capability of
distinguishing between upper- and lowercase words. This is
needed as named entities in Danish are generally indicated
through capitalisation. For example,Kamille is a woman's
name, wherekamille is the Danish word for chamomile.
The labels in the training data can be transformed into
numerical representations most easily by mapping each
label to a value. We select 0 forRefuted , 1 for
Supported and 2 forNotEnoughInfo .

To generateinput ids we concatenate a claim and
its evidence and tokenise them with the pre-trained
bert-base-multilingual-cased model. Instead of
splitting the input into words, BERT's tokenizer divides the
input into wordpieces (Wu et al., 2016), fragments of words
which are then translated to numerical representations.
Additionally, BERT makes use of special classi�cation
and separator tokens (Devlin et al., 2018). We make sure
to add the classi�cation token[CLS] to the beginning

18. https://github.com/google-research/bert/blob/master/multilingual.md

of the input and separate claim and evidence by[SEP] .
Then, the resulting tensors are padded (or truncated) to the
maximum input length to ensure that all inputs are of equal
size.

As we are padding the input, we need to make
certain that the model does not consider the padding in its
prediction. We do so by providingattention masks ,
which identify padding in theinput ids by having a
value of 0. The value 1 is added in positions where the
input is relevant.

By providing token type ids we can indicate
to the model that the input is comprised of two distinct
sequences, in our case claim and evidence. We therefore
generate for each claim a tensor of identical size to the
input ids where tokens belonging to the claim are
assigned the value 0 and tokens belonging to the evidence
are assigned the value 1.

4.2.4. Fine-Tuning the Model. Our starting point
for �ne-tuning are the pre-trained weights from the
bert-base-multilingual-cased model with its de-
fault con�guration. We decided to prioritise this over the
uncased version as it retains capitalisation which we hope
might help the model differentiate between named entities,
which are usually capitalised in Danish, and other noun
phrases, which are not. Then, one batch at a time, the model
predicts labels for the inputs in the current batch. False
predictions result in higher loss, which is modi�ed with the
aforementioned class weights prior to back-propagation.

After �ne-tuning is complete, the model is saved in
a binary format, which allows us to load it again at a later
point without repeating the �ne-tuning process. This step is
crucial for the creation of the fact veri�cation pipeline.

4.3. Fact Veri�cation Pipeline

So far, we only describe the use of our classi�er for
�ne-tuning a pre-trained model. However, we recon�gure
our classi�er to also be used for evaluation. In this case,
we have the classi�er load a model that we previously
�ne-tuned to evaluate its predictions on unseen data, such
as our test data set.

As claims in the test data set had their evidence
removed, we need to �nd relevant evidence before reading
the data into the classi�er. Therefore, we con�gure both
the classi�er and our evidence retrieval system to work
in a pipeline (see representation in Figure 12, page 13).
When executed, any provided set of claims will �rst be
supplemented with evidence by our evidence retrieval
system and then have its labels predicted by the classi�er.

We con�rm the integrity of the pipeline by ensuring
that its results are identical to those of running evidence
retrieval and classi�er individually.
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Figure 12. Representation over fact veri�cation pipeline.

5. Analysis and Results

We perform a number of experiments on our data, our
fact veri�cation pipeline and its individual components to
optimise performance and assess data quality. To begin
with, we optimise the classi�er and evidence retrieval
components by tweaking a range of parameters, such as
learning rate, �ne-tuning epochs and number of evidence
sentences to retrieve. We then test the best model on
our test set and report encouraging performance. Lastly,
we probe our data for statistical cues and perform data
ablations to assess the validity of our results.

We evaluate model performance on multiple parameters
and metrics. However, we primarily measure our fact
veri�cation system usingf 1 scores. According to Sasaki
(2007), the unweightedf 1 score is determined by the
harmonic mean precision and recall for each label where:

f 1 = 2 �
P recision � Recall
P recision + Recall

We use micro and macrof 1 to evaluate the multi-class
performance. The microf 1 can in short represent the overall
label accuracy (i.e. the amount of correctly labelled claims
out of all claims) of the classi�er, where the macrof 1 score
represent the arithmetic mean over each label'sf 1 score19.

5.1. Model Fine-Tuning

We �ne-tune the pre-trained mBERT model
bert-base-multilingual-cased with various
tweaks to its hyperparameters and data processing, and
evaluate its performance on the development data set. We
adapt the con�guration of our model where such adaptions
lead to an increase in the classi�er's performance.

5.1.1. Balancing Classes in Training Data.Our data
generation process has resulted in an imbalanced training
data set (see Table 1, page 10) , where the majority class is
nearly three times the size of the minority class. To assess
the effect that this imbalance has on �ne-tuning the model,
we employ two balancing strategies: Sampling and class

19. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1score.html

weights.
For sampling, we have the possibility of over-

or undersampling the data. Where oversampling has the
disadvantage that it may lead to over�tting, undersampling
may discard important data (Chawla, 2010). As our training
data set - and especially its minority class - are already
limited in size, we have elected to disregard undersampling
in this set of experiments.

Alternatively, class weights can be used to assign a
higher misclassi�cation cost to members of the minority
class during entropy calculation (Ling and Sheng, 2008).
The weight of a class can be proportional to its frequency
or determined through experimentation (Tayyar Madabushi
et al., 2019). As a starting point, we proportionally
assign higher weights to the two less frequent classes, but
recognise that this could be a potential point for further
tweaking.

To test the effect of implementing these balancing
strategies, we �ne-tune the model with either, both and none
of them enabled and compare the classi�er's performance.
The results are shown in Figure 13. Without any balancing,

Figure 13.f 1 scores for different balancing strategies.
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