This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet “so.. kktny in 30 mins?!” – even human experts find the entity kktny hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the ability of participating entries to detect and classify novel and emerging named entities in noisy text.

1 Introduction

Named Entity Recognition (NER) is the task of finding in text specific, unique names for specific concepts. For example, in “Going to San Diego”, “San Diego” refers to a specific instance of a location; compare with “Going to the city”, where the destination isn’t named, but rather a generic city.

NER is sometimes described as a solved task due to high reported scores on well-known datasets, but in fact the systems that achieve these scores tend to fail on rarer or previously-unseen entities, making the majority of their performance score up from well-known, well-formed, unsurprising entities (Augenstein et al., 2017). This leaves them ill-equipped to handle NER in new environments (Derczynski et al., 2015). As new named entities are guaranteed to continuously emerge and gradually replace the older ones, it is important to be able to handle this change. This paper gives data and metrics for evaluating the ability of systems to detect and classify novel, emerging, singleton named entities in noisy text, including the results of seven systems participating in the WNUT 2017 shared task on the topic.

One approach to tackle rare and emerging entities would be to continuously create new training data, allow systems to learn the updates and newer surface forms. However, this involves a sustained expense in annotation costs. Another solution is to develop systems that are less sensitive to change, and can handle rare and emerging entity types with ease. This is a route to sustainable NER approaches, pushing systems to generalize well. It is this second approach that the WNUT17 shared task focuses on.

2 Task Definition

With the novel and emerging entities recognition task, we aim to establish a new benchmark dataset and current state-of-the-art for the recognition of entities in the long tail. Most language expressions form a Zipfian distribution (Zipf, 1949; Montemurro, 2001) wherein a small number of very frequent observations occur and a very long tail of less frequent observations. Our research community’s benchmark datasets, representing only a small sample of all language expressions, often follow a similar distribution if a standard sample is taken. Recently, an awareness of the limitations of current evaluation datasets has risen (Hovy et al., 2006; van Erp et al., 2016; Postma et al., 2016). Due to this bias and the way many NLP ap-
proaches work internally (i.e. through deriving a model from the training data that often incorpo-
rates frequency information) many NLP systems are predisposed towards the high-frequency obser-
vations and less so to low-frequency or unknown observations. This is clearly exhibited in the fact
that many NLP systems’ scores drop when presented with data that is different in type or distribu-
tion from the data it was trained on (Augenstein et al., 2017).

We aim to contribute to mitigating the problem of limited datasets through this shared task,
for which we have annotated and made available 2,295 texts taken from four different sources (Red-
dit, Twitter, YouTube, and StackExchange comments) that focus on entities that are emerging (i.e.
not present in data from \(n \) years ago) and rare (i.e. not present more than \(k \) times in our data).

3 Data

To focus the task on emerging and rare entities, we set out to assemble a dataset where very few
surface forms occur in regular training data and very few surface forms occur more than once. Ide-
ally, none of the surface forms would be shared between the training data and test data, but this was
too ambitious in the time available.

3.1 Sources and Selection

In this section, we detail the dataset creation.

Training data – Following the WNUT15 task (Baldwin et al., 2015), the dataset from earlier Twitter NER exercises (Ritter et al., 2011) comprised this task’s training data. This dataset is made up of 1,000 annotated tweets, totaling 65,124 tokens.

Development and test data – Whilst Twitter is a rich source for noisy user-generated data, we also sought to include texts that were longer than 140 characters as these exhibit different writing styles and characteristics. To align some of the development and test data with the training data, we included Twitter as a source, but additional comments were mined from Reddit, YouTube and StackExchange. These sources were chosen because they are large and samples can be mined along different dimensions such as texts from/about geo-specific areas, and about particular topics and events. Furthermore, the terms of

use of the sources allowed us to download, store and distribute the data.

Reddit Documents were drawn from comments\(^1\) from various English-speaking subreddits over January-March 2017. These were selected based on volume, for a variety of regions and granularities. For example, country- and city-level subreddits were included, as well as non-geospecific forums like /r/restaurants. The full list used was:

Global: politics worldnews news sports soccer restaurants

Anglosphere, low-traffic: bahamas belize Bermuda botswana virginislands Guam isleofman jamaica TrinidadandTobago

Anglosphere, high-traffic: usa unitedkingdom canada ireland newzealand australia southafrica

Cities: cincinnati seattle leeds bristol vancouver calgary cork galway wellington sydney perth johannesburg montegobay

To ensure that comments would be likely to include named entities, the data was pre-emted (Derczynski and Bontcheva, 2015) using proper nouns as an entity-bearing signal. Documents were filtered to include only those between 20 and 400 characters in length, split into sentences, and tagged with the NLTK (Bird, 2006) and Stanford CoreNLP (Manning et al., 2014) (using the GATE English Twitter model (Cunningham et al., 2012; Derczynski et al., 2013)) POS taggers. Only sentences with at least one word that was tagged as NNP by both taggers were kept.

YouTube The corpus includes YouTube comments. These are drawn from the all-time top 100 videos across all categories, within certain parts of the anglosphere (specifically the US, the US, Canada, Ireland, New Zealand, Australia, Jamaica, Botswana, South Africa, and Singapore) during April 2017. One hundred top-level comments were drawn from each video. Non-English comments were removed with langid.py (Lui and Baldwin, 2012). Finally, in an attempt to cut out trite comments and diatribes, comments were

\(^1\)The raw data can be downloaded from https://files.pushshift.io/reddit/comments/.
Twitter The twitter samples were drawn from time periods matching recent natural disasters, specifically the Rigopiano avalanche and the Palm Sunday shootings. This was intended to select content about emerging events, that may contain highly-specific and novel toponyms. Content was taken from an archive of the Twitter streaming API, processed to extract English-language documents using langid.py, and two-kenized (O’Connor et al., 2010).

StackExchange Another set of user-generated contents were drawn from StackExchange². In particular, title posts and comments, which were posted between January-May 2017 and also associated to five topics (including movies, politics, physics, sci-fi, and security) were downloaded from archive.org³. From these title posts and comments, 400 samples were uniformly drawn for each topic. Note that title posts and comments that are shorter than 20 characters or longer than 500 characters were excluded, in order to keep the task feasible but still challenging. On average the length of title posts and comments is 118.73 with a standard deviation of 100.89.

Note that the data is of mixed domains, and that the proportions of the mixture are not the same in dev and test data. This is intended to provide a maximally adverse machine learning environment. The underlying goal is to improve NER in a novel and emerging situation, where there is a high degree of drift. This challenges systems to generalize as best they can, instead of e.g. memorizing or relying on stable context- or sub-word-level cues. Additionally, we know that entities mentioned vary over time, as does the linguistic context in which entities are situated (Derczynski et al., 2016). Changing the particular variant of noisy, user-generated text somewhat between partitions helps create this environment, high in diversity, and helps represent the constant variation found in the wild.

3.2 Preprocessing
Candidate development and test data was filtered for common entities. To ensure that all entities in the development and test data were novel, surface forms marked as entities in the training data were gathered into a blacklist. Any texts containing any of these surface forms were excluded from the final data.

Texts were tokenized using twokenizer and processed through GATE (Cunningham et al., 2012) for crowdsourcing. The corpus was not screened for obscenity and potentially offensive content.

3.3 Data Splits
The development data was taken from YouTube. The test split was drawn from the remaining sources.

3.4 Annotation Guidelines
Various named entity annotation schemes are available for named entity annotation (cf. CoNLL (Sang, 2002), ACE (LDC, 2005), MSM (Rizzo et al., 2016)). Based on these, we annotate the following entity types:

1. person
2. location (including GPE, facility)
3. corporation
4. product (tangible goods, or well-defined services)
5. creative-work (song, movie, book, and so on)
6. group (subsuming music band, sports team, and non-corporate organizations)

The following guidelines were used for each class.

person – Names of people (e.g. Virginia Wade). Don’t mark people that don’t have their own name. Include punctuation in the middle of names. Fictional people can be included, as long as they’re referred to by name (e.g. Harry Potter).

location – Names that are locations (e.g. France). Don’t mark locations that don’t have their own name. Include punctuation in the middle of names. Fictional locations can be included, as long as they’re referred to by name (e.g. Hogwarts).

corporation – Names of corporations (e.g. Google). Don’t mark locations that don’t have their own name. Include punctuation in the middle of names.

²https://stackexchange.com
³https://archive.org/download/stackexchange
Table 1: The emerging entity dataset statistics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td>1,008</td>
<td>1,287</td>
</tr>
<tr>
<td>Tokens</td>
<td>15,734</td>
<td>23,394</td>
</tr>
<tr>
<td>Entities</td>
<td>835</td>
<td>1,070</td>
</tr>
<tr>
<td>person</td>
<td>470</td>
<td>429</td>
</tr>
<tr>
<td>location</td>
<td>74</td>
<td>150</td>
</tr>
<tr>
<td>corporation</td>
<td>34</td>
<td>66</td>
</tr>
<tr>
<td>product</td>
<td>114</td>
<td>127</td>
</tr>
<tr>
<td>creative-work</td>
<td>104</td>
<td>142</td>
</tr>
<tr>
<td>group</td>
<td>39</td>
<td>165</td>
</tr>
</tbody>
</table>

Product – Name of products (e.g. iPhone). Don’t mark products that don’t have their own name. Include punctuation in the middle of names. Fictional products can be included, as long as they’re referred to by name (e.g. Everlasting Gobstopper). It’s got to be something you can touch, and it’s got to be the official name.

Creative-work – Names of creative works (e.g. Bohemian Rhapsody). Include punctuation in the middle of names. The work should be created by a human, and referred to by its specific name.

Group – Names of groups (e.g. Nirvana, San Diego Padres). Don’t mark groups that don’t have a specific, unique name, or companies (which should be marked corporation).

3.5 Annotation

Once selected and preprocessed, annotations were taken from the crowd. The GATE crowdsourcing plugin (Bontcheva et al., 2014) provided effective mediation with CrowdFlower for this. Three annotators were allocated per document/sentence, and all sentences were multiply annotated. Annotators were selected from the UK, USA, Australia, New Zealand, Ireland, Canada, Jamaica, and Botswana. Once gathered, crowd annotations were processed using max-recall automatic adjudication, which has proven effective for social media text (Derczynski et al., 2016). The authors performed a final manual annotation over the resulting corpus, to compensate for crowd noise.

3.6 Statistics

The dataset dimensions are given in Table 1. The test partition was slightly larger than the development data, which we hope provides greater resolution on this more critical part.

4 Evaluation

The shared task evaluates against two measures. In addition to classical entity-level precision, recall, and their harmonic mean, F1, surface forms found in the emerging entities task are also evaluated. The set of unique surface forms in the gold data and the submission are compared, and their precision, recall, and F1 are measured as well. This latter measure measures how good systems are at correctly recognizing a diverse range of entities, rather than just the very frequent surface forms.

For example, the classical measure would reward a system that always recognizes London accurately, and so such a system would get a high score on a corpus where 50% of the Location entities are just London. The second measure, though, would reward London just once, regardless of how many times it appeared in the text.

These two measures are denoted F1 (entity) and F1 (surface).

Surface forms should also be given the right class. For example, finding London as an entity is useful, but not if it’s recognized as a product. Therefore, when computing surface F1, the units used for evaluation are \langle surface form, entity type \rangle tuples. This favors a certain kind of system construction; for example, the tuple formulation assumes that systems are doing joint recognition and typing, instead of the two in distinct stages. However, our goal is to evaluate performance of systems after both named entity recognition and typing, so it fits well in this use case.

5 Results

Results of the evaluation are given in Table 2. Note that surface recognition performance is often lower than entity recognition performance, suggesting that the entities being missed are those that are rarer, and so don’t count towards entity F1 as much. We also see that NER in novel, emerging settings remains hard, reinforcing earlier findings that NE systems do not generalize well, especially in this environment (Augenstein et al., 2017).

6 Analysis

To gain insights into the difficult and less difficult parts of the task, we did a qualitative analysis of the outputs of the different systems. We see the most systems have no problems with entities that consist of common English names (e.g.
Lynda, Becky). However, when (part of) a name is also a common word (e.g. Andrew Little, Donald Duck), we see that some systems only identify Andrew or Donald as part of the name. Furthermore, some systems erroneously tag words such as it swift as entities, probably due to a bias towards Taylor Swift in many current datasets. Locations that contain elements that are also common in person names present an obstacle for the participating systems, for example in the detection of Smith Tower or Crystal Palace where Smith and Crystal are sometimes recognized as person names.

Names originating from other languages such as Leyonhjelm or Zlatan for persons or Somnarg and Mahazgund for locations often present problems for the systems. Mahazgund is for example classified as corporation, group, person, or other (no entity) whilst it refers to a village in Kashmir region of India.

Corporation and creative-work were generally difficult classes for the systems to predict. For corporation, this may be partly due to confusion between the corporation and group and product classes, as well as the fact that sometimes the corporation name is used to indicate a headquarters. For example Amazon on its own would in most cases be deemed a corporation in our gold standard, but in Amazon Web Services it is part of a product name. The White House can both be a location and a corporation, which requires the systems to distinguish between subtle contextual differences in use of the term.

The difficulty in detecting entities of class creative-work can often be explained by the fact that these entities contain person names (e.g. Grimm), common words (e.g. Demolition Man, Rogue One) and can be quite long (e.g. Miss Peregrine’s Home for Peculiar Children).

Annotation still remains hard; some entities in the corpus, if we co-opt Kripke’s “rigid designator” (Kripke, 1972) to define that role, are hard to fit into a single category. There were also other types of entity in the data; we did not attempt to define a comprehensive classification schema. The shortness of texts often makes disambiguation hard, too, as the spatial, temporal, conversational and topical context which a human reader relies on to interpret texts are all hidden under this model of annotation.

Twitter accounts can also fall into a number of different classes, and rather than instruct annotators on this, we left behavior up to them. Much prior work has avoided assigning tags to these (Ritter et al., 2011; Liu et al., 2011) though accounts often represent not only a person, also organizations, regions, buildings and so on. Therefore, much of our data carries these labels on Twitter account names, where the annotator has specified it.

7 Related Work

Named entity recognition has a long standing tradition of shared tasks, with the most prominent being the multilingual named entity recognition tasks organized at CoNLL in 2002 and 2003 (Sang, 2002; Tjong Kim Sang and Meulder, 2003). However, these, as well as follow-up tasks such as ACE (LDC, 2005) focused on formal and relatively clean texts such as newswire. This remains a difficult task, especially with the addition of the OntoNotes dataset, with modern work still pushing forward the state of the art (Chiu and Nichols, 2016).

Since 2011, Twitter has been gaining attention as a rich source for information extraction challenges such as (Ritter et al., 2011) and the Making Sense of Microposts challenge series starting in 2013 (Rizzo et al., 2017).

Emerging entities have received some attention entity linking approaches (Hoffart et al., 2014;...
Färber et al., 2016; NIST, 2017). In particular for entity linking, identifying whether an entity is present in a knowledge base to prevent an erroneous link from being created is a key problem.

Rare entities are an even less researched problem. Recasens et al. (2013) attempt to identify entity mentions that occur only once within a discourse to improve co-reference resolution. In (Jin et al., 2014), a system is presented that is focused on linking low frequent entities.

In the previous two WNUTs there has been attention for named entity recognition in noisy user-generated data in the form of a shared task on Named Entity Recognition in Twitter (Baldwin et al., 2015; Strauss et al., 2016). However, in those tasks, the dataset consisted of a random sample from a particular period without a particular focus on rare or emerging entities.

8 Conclusion

We have presented the setup and results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition. For this task, we created a new benchmark dataset consisting of 1,008 development and 1,287 test documents containing nearly 2,000 entity mentions. The documents were chosen in such a way that they contained mostly rare and novel entities of the types person, location, corporation, product, creative-work and group. The results of the seven systems that participated in this task show that entity recognition on these entities indeed is more difficult than on high frequent entities commonly found in named entity recognition challenges. More work in this area is thus needed and this shared task is only a small start. Going forward, datasets like this may be extended, possibly also with other entity classes for particular domains. Furthermore, we hope that more NLP tasks take up the challenge of creating more diverse benchmark datasets to expand our coverage of rare and novel language use.

Finally, the task is very tough. These are low figures for named entity recognition, and the surface form capture was even harder, reinforcing earlier findings that systems are failing to generalize successfully, instead profiting from frequently repeated entities in regular contexts. This is not working for noisy text, not Tweets, but broadly.

Acknowledgments

We thanks the participants for their enjoyable collaboration and for joining in this new task. This research received support from the European Commission’s Horizon 2020 funding programme under grant agreement 687847, COMRADES. Leon Derczynski thanks the University of California San Diego for facilities provided during this research. Marijeke van Erp acknowledges that the research for this paper was made possible by the CLARIAH-CORE project financed by NWO.

References

Timothy Baldwin, Young-Bum Kim, Marie-Catherine De Marneffe, Alan Ritter, Bo Han, and Wei Xu. 2015. Shared tasks of the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity recognition. ACL-IJCNLP 126:2015.

