Question Answering Against Very-Large Text
Collections
Darwin 2008 final Project Report

Leon Derczynski, MComp
Richard Shaw, MCompAlI
Ben Solway, MComp
Wang Jun, Msc
{aca00lad, acal4rcs, acal4bs, acpO07jw}@sheffield.ac.uk

13th May 2008

Contents

1 Introduction 2
1.1 Question Answering 2

1.2 Overview of aims in Research Proposal 2

1.3 Overview of objectivechanges 3

1.4 Summary of following sections 4

2 Improving Question Series Analysis 5
2.1 Introduction 5

2.2 CreatingaGold Standard 5
2.2.1 Gold Standard Guidelines 6

222 Conclusion 7

23 CreatingaMetric 7
231 Conclusion 9

3 Improving IR 10
3.1 Introduction 10

3.2 Evaluating IR Systems for QA 10

3.3 Finding Difficult Questions 12

3.4 Relevance Feedback 12
34.1 Measuring extension approaches 13

35 Conclusion 14

4 Evaluation 15
41 Conclusion e 15
4.1.1 Outcome with respect to proposed work 15

4.1.2 Deliverables, 16

42 Future Work 16

Chapter 1

Introduction

1.1 Question Answering

Question answering involves developing methods to extract useful information
from large collections of documents. This is done with specialised search engines
such as Answer Finder. The aim of Answer Finder is to provide an answer to a
question rather than a page listing related documents that may contain the correct
answer. So, a question such as “How tall is the Eiffel Tower” would simply return
“325m”or “1,063ft”.

Our task was to build on the current version of Answer Finder by improving
information retrieval, and also improving the pre-processing involved in question
series analysis

1.2 Overview of aims in Research Proposal

In our research proposal we aimed to:

1. Produce a set of Gold Standard reformulated question series: The gold
standard would be created by hand, outlining the best possible question cre-
ated from a QSA format. Alternative acceptable questions were rated on a
sliding scale (from 1 to 10) relating to how useful the reformulation was, with
10 denoting the most useful reformulation. The aim of a scoring system is
to reflect an improvement in QSA. It was envisioned that the failure analysis
tool could be used to evaluate the scoring system by showing the improve-
ments to the system when entering the different reformulations. The points
could then be weighted according to the improvements shown in coverage
and redundancy. It was thought a sample of the question series would have to

be used as it would be time consuming to build a Gold Standard (GS) for all
questions. In creating this GS we would create a number of guidelines which
could be followed to produce the best possible reformulation of a question.
These methods could then be used to produce gold standard questions from
other question series.

2. Find failures in existing IR systems: It was our intention to explore ex-
panding the FMA tool to allow the adjustment of an IR engine’s parameters.
The system could test multiple candidate configurations of an engine in a
single run, thereby allowing the comparison and analysis of individual pa-
rameters. This should help give an in-depth look into the impact that any
adjustments have.

3. Explore the possible replacement of Lucene as our IR component: Our
current IR engine, Lucene, is aging and so we were keen to explore the
possibility of replacing it. We had found two possible replacements at the
time of writing our research proposal, namely Indri, based on the Lemur
toolkit, and Terrier, developed at the University of Glasgow. Our aim was
to integrate these with the FMA tool, allowing us to assess them thoroughly
and score any improvement over the current Lucene performance.

4. Augment our search with complex queries: We also planned to explore
improving IR engine performance by leveraging the power of the query lan-
guages available in some alternative search engines.

1.3 Overview of objective changes

During the resulting research, we made some slight alterations with regard to how
we implemented the above proposals.

1. Creating the Gold Standard: We proposed that we would have different
levels of reformulation and that we would manually create and assign scores
to these levels. To be specific, we needed to measure the similarity of re-
formulations. This resulted in a gold standard that only listed the very best
possible reformulations. This would then act as a benchmark against which
other reformulations could be assessed.

2. Information Retrieval: Increasing the complexity of IR engine queries
proved to be unreasonable, as different engines had widely varying strengths
of query language. Further, no direction immediately presented itself to
guide us in altering queries. Thus, we constructed a data driven approach

to query expansion for question answering, and followed this through, pro-
ducing concrete deliverables. The failure analysis based comparisons didn’t
change; neither did our selection of platform or engines.

1.4 Summary of following sections

Chapter Two will review our progress with regards to developing a Gold Standard
and the development of the metrics required to evaluate reformulations. Chapter
Three will address our progress regarding Information Retrieval, including evalu-
ating IR systems for QA and finding difficult questions. We will then present our
overall conclusions and identify opportunities for future work in Chapter Four.

Chapter 2

Improving Question Series
Analysis

2.1 Introduction

In the research proposal we talked about creating a Gold Standard for question
reformulation. We said that we would have different levels of reformulations and
that we would manually create and assign scores to these values. We decided that
this was too vague and that we needed to create a metric to measure the similarity
of the metrics.

2.2 Creating a Gold Standard

We created a large set of GS questions, but the method by which we created
them changed slightly from the original proposal as we decided that our proposed
method was not specific enough. We decided that we needed to create a Gold
Standard consisting of the best reformulations, and then derive guidelines for cre-
ating effective gold standards for other question series. We would measure how ef-
fective our reformulations were against un-reformulated question series and those
questions reformulated so that the target of the question series were appended to
questions.

Instead of taking each question and making several reformulations and rating
each one on a sliding scale, we took a subset consisting of 10 of the 65 question se-
ries to be reformulated and two of us produced individual variations, creating one
or more possible reformulations, before reconciling them. During this stage we
looked at our reformulations and eliminated those which were unsatisfactory and
were unlikely to be created automatically. From the remainder we derived a set of

guidelines by which we could reformulate the rest of the question series and which
would be useful for anyone else wanting to create Gold Standard reformulations.
Reformulating another set of 10 question series separately and then reconciling
them further refined these guidelines. In total we created a Gold Standard consist-
ing of 448 reformulations, from 406 questions contained within 65 question series.
This and other reformulation methods were then evaluated using a suitable metric,
as described below in “Creating A Metric”.

2.2.1 Gold Standard Guidelines

Analysis of the Gold Standard reformulations allowed us to create a set of guide-
lines for creating future Gold Standards, which are summarised below and dis-
cussed further in [SSGGO08]. These guidelines should allow anyone to create their
own set of Gold Standard reformulations. The emphasis here is on producing
guidelines, and not rigid rules as such is the complexity of English that it is not
feasible to cover every possible sentence.

1. Context independence and readability: The reformulation of questions
should be understandable outside of the question series context. The refor-
mulation should be written as a native speaker would naturally express it;
this means, e.g., that stop words are included.

2. Reformulate questions so as to maximise search results: Example: “Who
was William Shakespeare?” vs “Who was Shakespeare?”. William should
be added to the phrase as it adds extra information which could allow more
results to be found.

3. Target matches a sub-string of the question: If the target string matches
a sub-string of the question the target string should substitute the entirety of
the substring. Stop-words should not be used when determining if strings
and target match but should usually be substituted along with the rest of the
target.

4. Rephrasing: A Question should not be unnecessarily rephrased.

5. Previous Questions and Answers: Questions which include a reference to a
previous question should be reformulated to include a PREVIOUS_ANSWER
variable. Another reformulation should also be provided should a system
know it needs the answer to the previous question but has not found one.
This should be a reformulation of the previous question within the current
question.

6. Targets that contain brackets: Brackets in target should be dealt with in the
following way. The full target should be substituted into the question in the
correct place as one of the Gold Standards. The target without the bracketed
word and with it should also be included in the Gold Standard.

7. Stemming and Synonyms: Words should not be stemmed and synonyms
should not be used unless they are found in the target or the current question
series. If they are found then both should be used in the Gold Standard.

8. It: The word it should be interpreted as referring to either the answer of the
previous question of that set or if no answer available to the target itself.

9. Pronouns (1): If the pronouns he or she are used within a question and
the TARGET is of type ‘Person’ then substitute the TARGET string for the
pronoun. If however the PREVIOUS_ANSWER is of type ‘Person’ then it
should be substituted instead as in this case the natural interpretation of the
pronoun is to the answer of the previous question.

10. Pronouns (2): If the pronouns his/hers/their are used within a question and
the TARGET is of type ‘Person’ then substitute the TARGET string for the
pronoun appending the string “s” to the end of the substitution. If however
the PREVIOUS_ANSWER is of type ‘Person’ then it should be substituted
as the natural interpretation of the pronoun is to the answer of the previous

question.

2.2.2 Conclusion

The aim of creating a set of Gold Standards was to provide a benchmark against
which other question reformulation methods could be compared. Though the Gold
Standard was sufficiently large to create both a series of helpful guidelines and to
achieve the proprosed goals, we feel that expanding the Gold Standard to at least
1000 reformulations will provide a more reliable set of guidelines and be more
useful for evaluating reformulation methods.

2.3 Creating a Metric

As described above we decided that we would have only the best reformulation(s)
in the Gold Standard instead of the full available gamut as originally planned (in-
cluding the lowest scoring ones). We also decided that the system should evalu-
ate the closeness of the QA system reformulations on a scale of 0 to 1 (1 being
the highest) with 1 indicating an identical match. To compare the Gold standard

against the existing QA system reformulations we needed to find a metric that gave
good scores to reformulations which seem intuitively closer to the gold standard.

There are many different systems which attempt to measure string similarity.
We experimented with tools like METEOR [LAO7] and ROUGE [Lin04] but found
them unsuitable for this task. The scores returned concentrate too much on the
ordering of words. Furthermore both ROUGE and METEOR were developed to
compare larger stretches of text — they are usually used to compare paragraphs
rather than sentences. This could be one reason why ordering is valued more highly
in this kind of tool. It was also difficult to adjust these tools to give more sensible
scores for our reformulations. We decided developing our own metric would be
simpler than trying to adapt one of these existing tools.

To explore candidate similarity measures we created a program which would
take as input a list of reformulations to be assessed and a list of gold standard
reformulations, and compare them using a selection of different string comparison
metrics.

To find out which of these metrics best scored reformulations in the way which
we desired, we created a set of test reformulations to compare against the gold
standard reformulations.

Three test datasets were created: one where the reformulation was simply the
original question, one where the reformulation included the target appended to the
end, and one where the reformulation was identical to the gold standard. The idea
here was that the without target question set should score less than the with target
question set and the identical target question set should have a score of 1 (the
highest possible score).

We then had to choose a set of metrics to test and chose to use metrics from
the SimMetrics library as it is an open source extensible library of Similarity or
Distance Metrics !

The next task was to run the metrics provided by SimMetrics over the three
datasets and look to see which of the metrics score as we would expect over these
datasets. From these results we found that certain metrics were not appropriate.
Some of them did the opposite to what we required them to do, in that they scored
a reformulation without the target higher than one with the target. This could be
due to over-emphasis on word ordering. These metrics were discounted at this
stage. Other metrics were also discounted as the difference between “With Target”
and “Without Target” was not large enough; it would have been difficult to measure
improvements in the system with a small difference.

The four best performing metrics were: DiceSimilarity, JaccardSimilarity, Block-
Distance and CosineSimilarity. The next task was to refine these metrics so that

"http://www.dcs.shef.ac.uk/sam/simmetrics.html.

the scores returned were more useful for the system i.e. the gaps between “with
target”, “without target” and “identical” are as big as possible. To do this we de-
cided to try and increase the importance of ordering by also taking into account
shared bigrams and trigrams. As we do not want ordering to be too important in
our metric we introduced a weighting mechanism into the program to allow us to
use a weighted combination of shared unigrams, bigrams and trigrams.

We then ran the four best performing metrics over the three datasets with dif-
ferent weightings on bigrams and trigrams. From the results it was clear the both
bigrams and trigram reduced the gap between “with target” and “without target”.
Trigrams reduced this gap too much and we decided to not use them in further
weightings. Although bigram analysis reduced the “with target” and “without tar-
get” gap they also extended the gap between “with target” and “identical” datasets
which is useful. The objective now was to find the best balance of the gaps. We
found that a weighting of unigrams 2 and bigrams 1 gave the best results with the
metric providing the best score being JaccardSimilarity.

Using the metrics with our QA system we found that it scored it sensibly. It
gave it a score in between the “with target” and “identical” datasets which is cor-
rect, as our current system did attempt to order the words correctly but sometimes
failed and fell back to adding the target on the end of the reformulation.

2.3.1 Conclusion

The aim of creating this metric was to quickly evaluate the pre-processing code
in the QA system against a gold standard. We were successful in finding a useful
metric and bigram weighting for this metric. Further work could be to refine the
weighting used further using machine learning techniques. We could also automate
the process of checking the changes made in the pre-processing code more so that
it can be evaluated more easily. This could include highlighting reformulations
which improved the most and decreased the most from the changes made in the
code.

Chapter 3

Improving IR

3.1 Introduction

The IR component of the original Sheffield QA system effectively capped the pro-
portion of corectly answerable questions at around 60%. In our research proposal,
we suggested improving the performance of the IR component so that the overall
accuracy of the question answering system might exceed this limit.

3.2 Evaluating IR Systems for QA

One of our suggestions was to replace the IR component. The prior Sheffield QA
system only used Lucene for IR in the TREC test. The Failure Analysis Tool was
previously used to evaluate the performance of the Lucene engine, so we changed
this tool (through adding database parameters) to make it be able to support multi-
ple different IR engine configurations. Finally, the Failure Analysis Tool supported
all three IR engines, Lucene, Indri and Terrier, which were used in our experiment.
It reported on all engines at once and provided comparisons between them.

Two powerful IR engines, Indri and Terrier, had been recommended. We inte-
grated these two IR engines into the Sheffield QA system using its plug-in inter-
face. Another part of this QA system (GetRelevantDocuments) was used to test
engines with TREC question sets.

In our experiment, in order to evaluate the performance of three IR engines, we
looked at both passage- and document-level retrieval. The original QA system an-
swered questions using Lucene based on passage-level indexes; we then changed
programs to add document-level indexes for Lucene based on the AQUAINT cor-
pus. Indri natively supports document-level indexing of TREC format corpora.
Passage-level retrieval was done by defining delimiters, which were assigned to

10

the paragraph tags in the corpus; this allows both passage- and document-level
retrieval from the same index, set in the query. Terrier doesnt natively support
passage-level indexing or retrieval, so we built a program to chunk original doc-
uments in the AQUAINT corpus to passage-level documents then built indexes
based on the chunked documents to get passage-level indexes for Terrier. In addi-
tion, we directly built document-level indexes for Terrier by using its TREC Terrier
application.

The top 20 documents for each question in the TREC2004, TREC2005 and
TREC2006 were retrieved using three IR engines at passage level. In addition, the
top 20 documents for each question in each TREC year were also retrieved using
Indri and Terrier at document level, and we have presented all results in our journal
paper [DWGGOS8]. We didnt retrieve documents using Lucene at document level
over TREC question sets from each year because it was a very time consuming
process. For each question set, it usually took 7-10 hours to finish it. Another
important reason why we didnt do it is that passage-level retrieval performs better
than document-level retrieval for answer extraction because the amount of noise is
somewhat reduced when using passage-level retrieval [RG04]. From the results of
our experiment, we can see that the performance of three IR engines doesnt high-
light a strong difference. Indri performs slightly better than other two engines with
lenient matching. Moreover, the coverage of all three engines didnt exceed 64%
with strict matching, so simply switching to an alternative IR component won’t fix
the problem.

Another suggestion is to find failures in existing systems. To do failure anal-
ysis, we suggested grouping tested questions by type or their expected answer
(EAT). We didnt do this because we realized that the coverage probably wont go
much over 60% with any engine without making changes to the query strings. As
a result, we began to focus on identifying problem questions and attempted to ex-
pand them with words extracted from answer passages. We then re-tested expanded
questions to see if the overall question answering accuracy improved.

Finally, we suggested augmenting search with complex queries. We didnt do it
because although Indri has a very rich query language, query languages in Terrier
and Lucene are not strong, so that it is difficult to do a comparison among three
IR engines and we didnt want to be bound to a single IR engine. Our aim is to
find a common approach to improve the performance of answering questions for
all possible IR engines used in our system. So we began to focus on finding a data
driven approach to query extension.

11

3.3 Finding Difficult Questions

Given that coverage is so low, there must be a significant number of questions
that are difficult. We planned to identify these, hoping further examination could
shed light on the problems. Using the failure analysis database, we automatically
selected difficult questions and reported lists of these for each IR engine. This
provided a sample of data describing situations in which the IR component behaves
badly.

To capialise on this data and attempt to improve IR performance, we attempted
to identify words that could be used as query extensions. Our hypothesis was that
words found in answer-bearing paragraphs would boost performance when used as
query extensions. To this end, for each question we found answer-bearing para-
graphs based on TREC answer specifications, extracted potentially useful words
from them, and built a list of candidate extensions.

Not all documents containing answers are noted, only those checked by the
NIST judges [BKLO4]. Match judgements are incomplete, leading to the poten-
tial generation of false negatives, where a correct answer is found with complete
supporting information, but as the information has not been manually flagged, the
system will mark this as a failure. Assessment methods are fully detailed in Dang
et al. [DLKO6].

A mean redundancy is also calculated over a selection of redundancy measures.
Questions with a low mean redundancy are found to be difficult, and subjected to
further analysis. Filtering the question set by these difficult questions produces a
TREC-format question set for re-testing the IR component.

We found that difficult questions did vary between engines and configurations.
The size of the difficult question set was not always enough to provide useful data,
and so we attempted to increase it, by restricing the way in which difficult questions
were determined; sometimes n would be reduced, or only strict measures used, or
the number of engines restricted. This successfully increased the answer set. Our
full methodoly and results are described in by Derczynski et al. [DWGGOS].

These extended question were then tested, looking for which extension key-
words provided the most assistance.

3.4 Relevance Feedback

Some data that can be obtained without prior knowledge of the answers ought to
be tested. Knowing which words assist, given hindsight, is of no use unless we can
find a technique for query expansion that selects some of these useful words for
unseen questions. To test a simple query expansion method, we picked blind rele-

12

2004 2005 2006
HEW found in IRT 4.17% | 18.58% | 8.94%
IRT containing HEW | 10.00% | 33.33% | 34.29%
RF words in HEW 1.25% 1.67% | 5.71%

Table 3.1: HEW = “helpful extension words”, the set of extensions that, when
added to the query, move redundancy above zero. » = 5, n = 20, using Indri at
passage level. (IRT = “initially retrieved texs”)

5 50 Baseline
Rank || Doc Para | Doc Para
5 0.253 | 0.251 | 0.240 | 0.179 || 0.312
10 0.331 | 0.347 | 0.331 | 0.284 || 0.434
20 0.438 | 0.444 | 0.438 | 0.398 || 0.553
50 0.583 | 0.577 | 0.577 | 0.552 || 0.634

Table 3.2: Coverage (strict) using blind RF. Both document- and paragraph-level
retrieval used to determine RF terms.

vance feedback (assisted relevance feedback would be unsuitable given the nature
of the TREC QA tasks). This operated by attempting an initial retrieval using the
base question, and harvesting keywords from the top r documents. Words were
ranked according to their term frequency (TF) and then appended to questions to
form new query strings.

3.4.1 Measuring extension approaches

Using five words for relevance feedback, we measured the intersection between
helpful extension words and those chosen for relevance feedback. Our findings
(see Table 3.4.1) suggested that while a noticeable proportion of texts contained
potentially helpful words, these words were not often selected by the TF ranking
mechanism, which managed to actually find helpful words less than 10% of the
time (the other 90% of the time, the added words were simply noise).

This finding was reinforced by the actual performance of TF-based RF, shown
in Table 3.2, where a consistent drop in coverage was found.

13

3.5 Conclusion

In conclusion we have added Indri and Terrier to the Sheffield QA system and
did a comparison for answering TREC question sets of three years among three
IR engines, Lucene, Indri and Terrier, based on both passage-level and document-
level retrievals. We didnt find a strong difference at the performance of answering
questions among three IR engines and all of them didnt exceed 60% accuracy.

Further, we decided to focus on expanding query through using a data driven
approach to attempt to improve the performance of IR. We successfully identified
difficult questions, and then developed a means of extracting extension words, as
planned. Our hypothesis that these extension words would help provide answers
for difficult questions was then sustained.

We further managed to develop a demonstrably accurate tool for assessing
query expansion approaches. This was used to test blind relevance feedback based
on term frequency, which it predicted would perform badly. In real tests, blind
relevance feedback provided an overall negative effect on feedback.

14

Chapter 4

Evaluation

4.1 Conclusion

The project seems to have been an overall success. Solid work and progress was
made in most areas that we planned to tackle, leading to two conference paper
submissions.

4.1.1 Outcome with respect to proposed work

With regard to the IR track, we analysed failures in the existing system, though
did not attempt to perform any kind of EAT-oriented analysis. Instead, we built
a reference list of difficult questions and a body of helpful words, and then made
these difficult questions somewhat approachable. We did manage to construct a set
of easily interchangeable IR component configurations, measure performance with
them, and used all of these plugins in investigating difficult questions. Augmenta-
tion of queries didn’t happen in the way we imagined - instead of using the native
query language of each engine, which would have bound us strongly to specific
software, we explored query expansion based on existing data.

Our aim with the QSA track was to create a Gold Standard by hand and a
metric for evaluating reformulations. Our original aims were modified when we
realised our proposed method of creating Gold Standards was too vague. We in-
stead produced a Gold Standard of only the best possible reformulations and from
these derived a set of guidelines that anyone will be able to follow in order to cre-
ate their own Gold Standard. We were successful in evaluating several metrics and
creating a metric to evaluate the pre-processing code in the QA system against the
Gold Standard together with appropriate metric and bigram weighting.

15

4.1.2 Deliverables
The QSA track produced:
* A set of 65 Gold Standard reformulated question series.

* Guidelines for creating Gold Standard reformulations from other question
series.

* Creating a metric to quickly evaluate the pre-processing code in the QA sys-
tem against a Gold Standard and a useful metric and bigram weighting for
this metric.

* Paper submission to IR4QA 2008 [SSGGOS].

The IR track produced:

* A tool for predicting the performance of query expansion techniques.

* Methods for identifying difficult questions and candidate extension terms.
* A review of IR components for QA.

* Paper submission to IR4QA 2008 [DWGGOS].

4.2 Future Work

Further work with regard to QSA will aim to expand the Gold Standard to at least
1000 questions, refining the guidelines as required. The eventual goal is to in-
corporate the approach into an evaluation tool such that a developer would have a
convenient way of evaluating any question reformulation strategy against a large
gold standard. One also needs to develop methods for observing and measuring
the effect of question reformulation within question preprocessing upon the perfor-
mance of downstream components in the QA system, such as document retrieval.

An alternative data driven approach to improving IR for QA would be to build
associations between recurrently useful terms given question content. Question
texts could be stripped of stopwords and proper nouns, and a list of HEWSs associ-
ated with each remaining term. To reduce noise, the number of times a particular
extension has helped a word would be counted. Given sufficient sample data, this
would provide a reference body of HEWs to be used as an aid to query expansion.
Our query expansion assessment tool needs a more thorough roadtest, and could
be better validated. Also, it is possible to build models of the types of words (using
e.g. part of speech) useful to each type of question (with e.g. EAT classification),
and adjust the words used for query expansion accordingly.

16

Acknowledgements

Special thanks to Mark A. Greenwood and Rob Gaizauskas for their relentless
support of our work.

17

Bibliography

[BKLO04]

[DLKO6]

[DWGGO08]

[LAO7]

[Lin04]

[RG0O4]

[SSGGO8]

M.W. Bilotti, B. Katz, and J. Lin. What works better for question an-
swering: Stemming or morphological query expansion. Proceedings
of the Information Retrieval for Question Answering (IR4QA) Work-
shop at SIGIR 2004, 2004.

H.T. Dang, J. Lin, and D. Kelly. Overview of the TREC 2006 question
answering track. Proc. of TREC, 2006.

L. Derczynski, J. Wang, R. Gaizauskas, and M. Greenwood. A Data
Driven Approach to Query Expansion in Question Answering. In Pro-
ceedings of the 2nd workshop on Information Retrieval for Question
Answering, May 2008.

Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric
for MT evaluation with high levels of correlation with human judg-
ments. In Proceedings of the Second Workshop on Statistical Machine
Translation, pages 228-231, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics.

Chin-Yew Lin. Rouge: A package for automatic evaluation of sum-
maries. In Stan Szpakowicz Marie-Francine Moens, editor, Text Sum-
marization Branches Out: Proceedings of the ACL-04 Workshop,
pages 74-81, Barcelona, Spain, July 2004. Association for Compu-
tational Linguistics.

I Roberts and R Gaizauskas. Evaluating passage retrieval approaches
for question answering. In Proceedings of the 26th European Confer-
ence on Information Retrieval, 2004.

R. Shaw, B. Solway, R. Gaizauskas, and M. Greenwood. Evaluating
Automatically Reformulated Questions In Question Series. In Pro-
ceedings of the 2nd workshop on Information Retrieval for Question
Answering, May 2008.

18

