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Abstract 
 

As humans use information retrieval systems, a wealth of data is generated. The problem of 

determining documents relevant to a query can be learned instead of developing a blind 

information retrieval system. Feedback on relevance can be used as training data for machine 

learning algorithms, with the end goal of creating a system reliant on human relevance 

judgements instead of conventional information retrieval methods. 

 

This project will review approaches used for returning search results over a collection of 

independent documents, evaluation of information retrieval systems, and teaching machine 

learning algorithms to classify documents given a natural language query. 

 

The performance of a set of machine learning algorithms at classifying relevant documents 

was examined. Some exploratory work on optimising problem representations is undertaken, 

with varying degrees of success. Other approaches for gathering data and classifying 

documents to aid humans in search are also discussed. 
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1. Introduction 
 

Information retrieval 

The ability to locate a relevant piece of information out of a huge mass of data is critically 
useful, especially as more and more data becomes available to search. The time saved by 
having an automated system search through information instead of manually looking up data is 
immense – for example, the indexing of books in a library makes locating them a feasible task; 
looking at thousands of titles one by one whilst trying to locate a single book is simply not a 
reasonable task. 

Systems that provide the ability to discover potentially useful documents from a large collection 
are known Information Retrieval (IR) systems. The umbrella covered by this type of system is 
large – it includes the library system listed above, as well as the accompanying card index. In 
this document, we are only interested in automatic information retrieval systems that operate 
on a computer and work over digital representations of documents. 

 

Searching the web 

The web is a huge and fairly unstructured collection of digital documents. It’s large enough that 
locating data manually is a laborious, time consuming and often unrewarding task. This 
problem is one seemingly ideally suited to automatic information retrieval. As a result, internet 
search engines have appeared, and are one example of web-based IR systems that help 
people find documents and information useful to them. 

These have evolved over the past years to a point where the most common means of initiating 
a search is to enter a few key words and perhaps specify a limited number of constraints. The 
search engine will then return results that its creators believe will be those most useful to the 
searcher (given the key words used), often with the most relevant document first and others in 
decreasing order of importance. 

 

Keeping results relevant 

Systems that can provide this ability are significant time saving devices, and those that give 
the best results will help save the most time. A search engine that returns the perfect answer 
to what a user is looking for inside its top few results is a much more useful device than one 
that mixes irrelevant results in with useful documents, or even one that produces no strongly 
useful results at all. Users will still have to plough through suggested documents before 
discovering those containing useful information. 

Writing an IR system that will work over a diverse set of documents is no mean feat in itself. 
For example, a direct approach would be to only return documents that contained the terms 
searched for; this would hopefully ensure that documents are relevant, as they contain 
requested words. However this risks returning a very large volume of documents, depending 
how large the corpus that’s searched over is. There are a few methods of determining how 
well a document matches that a query will be examined and evaluated. 

It’s also possible to use embedded features in a document, including the formatting and 
position of words inside a document, as well as data about the document, otherwise known as 
metadata. This could include the date of the document’s creation, or if the document relates to 
e.g. a person, then the location of that person. All these factors can be taken into consideration 
when trying to provide the best search results possible to end users. 

One problem generated by the variety of data available is how to weight or prioritise certain 
measurements about a document. To this end, it’s important to be able to evaluate how well 
(or poorly) an IR system is performing. A few mathematical measures are available, which we 
will visit. However most of the more accurate measures require human feedback; intuitively, 
it’s hard to automatically grade whether an IR system is returning relevant documents – some 
comparison of actual rank and ideal rank would be needed, and determining the ideal rank 
automatically would solve the IR problem anyway. 
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Monitoring performance 

Collecting explicit feedback data on every set of results provided via questions (such as “are 
these documents suitable”, “which document is the best of the set”, “which documents seem 
irrelevant”) is an extremely time consuming process, both for users of the IR system and for 
the system itself. This makes the evaluation of an IR system at first seem like a non-trivial task. 
However, as users interact with a system, they leave certain pieces of data behind; the time 
taken to select a search result; if the results are ordered, the rank of the result clicked on; 
documents that they will have considered but not pursued further, and so on. Existing work on 
user behaviour and analysis of it will be considered, especially in the context of search results, 
where studies involving monitoring where users look on a page have been undertaken. These 
studies have resulted in conclusions that can be drawn about the performance of an IR system 
given user behaviour whilst interacting with it. 

 

Such conclusions are valuable as they provide an inexpensive measure of how well an IR 
system is doing without requiring explicit feedback. This evaluation data could be used in a 
process of adjusting IR system internal weightings by trial and error, in an effort to tune the 
system; this would have to be a continuous process as data was accumulated and the 
collection of documents grew. 

Working with trial and error is likely to produce good results over time. Another method of 
using the data to classify and sort documents would be to take all data from human interaction 
with the system – both implicit and explicit – and try to establish rules and conditions for 
determining if documents are going to be relevant or not. 

A series of approaches could be considered for processing this data and making best use of it. 
Much study has been done in the field of Machine Learning (ML) algorithms that can classify 
or evaluate instances of data given a set of training data; these are the algorithms that we will 
pay most attention to as part of this project. 

 

Adapting to information retrieval 

Machine learning algorithms are generally designed to find an optimal solution for processing 
previously unseen situations based on past experience. There is usually maths and procedure 
applied to processing the past experiences that allows the algorithm to learn and interpret new 
situations better than a system coded based on prior knowledge but with no past experience. 

This ability to handle unforeseen circumstances and learn from past experiences is well suited 
to the task of processing data on relevance from humans and turning it into optimised 
adjustments and tunings of the IR system, in order to maximise performance. What we will 
attempt to do will be to first amass a quantity of training data, and then evaluate the accuracy 
of document selection by a learning algorithm. Hopefully there should be a significant rise in 
performance. 

 

To train such a learning algorithm will require a significant amount of data. We will discuss 
methods of gathering this data. Hopefully, a wealth of training data will allow more accurate 
predictions from the learning algorithms, once it’s placed into a suitable format. Finally, we will 
discuss the performance of a selection of learning algorithms and the underlying IR system, 
and avenues worthy of further investigation. 
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2. Literature Review 
 
2.1 Information retrieval 
An information retrieval (IR) system is that provides references to useful information resources 
when queried. For example, a system that returns a set of film titles when asked for old horror 
movies could be considered an information retrieval system; the telephone directory enquiries 
system is also an information retrieval system. 

 

2.1.1  IR Models 

Models have grown to tackle the problem of retrieving documents based on a keyword query. 
Some are very simplistic and straightforward, such as the Boolean model, and often have an 
accordingly low performance level. Others are complex to implement but can achieve good 
levels of performance. We will look at some classic IR methods below. 

 

Boolean model 

The most basic version of the Boolean model decides which documents to return by simply 
adding any to the result set that contain the query term, using a single word as the query. 
Queries can be made more complex by adding joining more than one term with a standard 
Boolean operator, most typically AND or OR. For example, 

cat would return all documents containing the word “cat” 

cat AND steamroller would return all documents containing both the word “cat” and the 
word “steamroller” 

cat OR mog would return all documents containing either the word “cat” or the word “mog” 

Some aspects of the Boolean IR model are present in the most popular IR systems that we 
use – for example, Google [21] assumes use of the AND operator between all of the tokens in 
its search queries. 

A big disadvantage with the Boolean model is that it doesn’t provide any ranking of results; 
they are simply returned as an unordered set. It is also prone to selecting irrelevant documents 
– while shorter queries may return many relevant documents, they’re also liable to returning 
many irrelevant ones. This can be described as having high recall but low precision (see 
2.2.1). 

A straightforward method to refine the result set and gain higher precision would be to add 
more query terms after examining the previous results. This process of query refinement 
(known as iterative retrieval [25]) has been studied significantly since the 1960s as part of the 
SMART retrieval system developed at Cornell university [26] right up to analysis of user 
behaviour on modern search engines [21]. The downside of adding to a Boolean query is that 
it can lead to very complex queries that are hard for users to keep track of, and is therefore a 
potentically unintuitive method of searching. 

 

Vector model 

The vector model attempts to rank documents by measuring how close they are to the query 
by representing the query and document as normalised vectors. The ranking algorithm 
presents documents in descending order of their proximity to the query vector. This allows the 
most relevant results to be presented first, thus saving time for the user, and making it easier 
to use results when compared to the Boolean model which returns an unordered set. 

The vector has terms as its axes, and for each term, there is a weight, for each document and 
the query. Single term queries, when not using any kind of thesaurus (see 2.1.3), lead to a 
one-dimensional vector space. Vector comparisons in this linear space typically resemble a 
simple tf.idf ranking behaviour (see 2.1.5). 
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The proximity of the query to each document is typically measured as the cosine between the 
query vector and each document vector. Those documents closest to the query achieve values 
at or close to 1; those with weaker matches achieve a lower value down to a minimum of zero. 

The vector model proves to be efficient at providing relevant documents in a sensible ordering, 
and has been used in research IR systems for over thirty years [26]. Its results are still 
considered acceptable [1], as it has a low computational overhead coupled with good 
performance. 

Where the unaugmented vector model falls down is that while it may retrieve documents that 
contain the keywords searched for, is has no ability to return documents that are relevant to a 
query but don’t contain the words. For example, a page about oak carving may rank well when 
searched for using the keywords “oak carving” or “carving in oak”, but will probably not be 
selected by a search for “wood sculpting” or “arts and crafts”. 

 

2.1.2  Stemming 

A problem with the vector space and Boolean models of IR is that they both fail to take into 
account similar words that are spelt differently. A common criticism of the vector space model 
is that is assumes term axes are orthogonal (e.g. that they have no relation) when this is in fact 
often not the case. 

For example, a search for “exploring the amazon” using the vector space model would rank 
documents that featured the phrase “amazon exploration” much lower than those incorporating 
the search terms verbatim, and “amazonian exploration” ignored entirely. The weight of 
“exploration” as a term is assumed to be completely independent of “exploring”, which is an 
incorrect assumption. 

Many words do contain common roots, as in this example. Both “exploring” and “exploration” 
share the same first six letters, “explor”. This root – or stem – is also present in some other 
words such as “explore” and “explorer”, and all have related meanings. 

This behaviour can be represented in IR by searching for matches using the stems of words 
instead of the literal terms. Such a search is likely to have a much broader match as it will 
incorporate a wider range of keywords and therefore more documents. It can be said to have a 
good chance of boosting the recall (see 2.2.1) value of the system. Further, as the extra 
documents returned will all contain terms that are at worst related to query terms, there should 
be little chance of precision falling despite a higher recall value. 

 

Stem Potential words 

explor 

Explorable 
Explore 
Explorer 
Explored 
Exploring 
Exploration 

synchron 

Synchronise 
Synchronised 
Synchronises 
Synchronising 
Synchronism 
Synchronize 
Synchronized 
Synchronizer 
Synchronizes 
Synchronizing 
Synchronous 
Synchrony 

 

Table 2.3 – some stems and words derived from those stems 
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As can be seen from the above examples, the ability to take a word back to its stem and 
search for matches based on stem greatly increases the number of keywords than can be 
considered equivalent. Also in this case, a trivial difference in UK and US spelling of worse 
ending –ise or –ize has been glossed over, as both “synchronise” and “synchronize” are 
considered equivalent. This allows users of either origin to search over the corpus in their 
native dialect and have relevant documents returned regardless of the author’s spelling 
preference. 

A disadvantage of the stemming system is that it is sometimes hard to provide a stem for a 
word that does not introduce less relevant variations. For example, it is hard to stem the word 
“synchrotron” any further back than “synchrot” for fear of including all the “synchron” words 
above. Therefore it’s important to have an accurate stemming algorithm. 

One popular and well developed stemmer for the English language is the Porter stemmer [22]. 
It is efficient and fairly accurate, and is used as part of the SMART retrieval system [12,26]. 
However some facets of the Porter stemming algorithm lack a linguistic base which leaves its 
results occasionally unintuitive or erroneous. For example, rather than incorporate a known set 
of common English prefixes (dis, un, re, anti, a), it will stem words containing these prefixes 
based on their ‘measure’, which is an approximation of syllable count based upon the ordering 
of vowels and consonants inside a word. It does not take into account typical English 
phonemes but instead uses an arbitrary list. 

 

2.1.3  Thesauri 

An alternative to stemming that provide alternative suggestions for words is the use of a 
thesaurus. A thesaurus is essentially a linked set of words, indexed by word. The links from 
each word point to other relevant words. For example, one entry may be: 

 

Word Related terms 

Recent 

new 
fresh 
current 
topical 
hot 
modern 
up to date 
latest 
contemporary 

 

Table 2.4 – A thesaurus entry 

Looking up query terms in a thesaurus allows the set of terms that will be searched over to be 
expanded. Returning all documents that contain “recent” or any of the related terms listed 
above is likely to generate a larger result set that simply returning all those that contain just 
“recent”. This will probably increase the recall value (it definitely won’t decrease it as the result 
set will never decrease in size) whilst hopefully not adversely affecting precision. Certainly the 
precision of returning documents based on a thesaurus-expanded query should usually be 
greater than that of returning additional randomly selected documents. 

Thesauri can be constructed manually by humans; many have been hand-compiled over the 
past centuries and are now available in machine readable format. The disadvantages with 
using of these are that, even though the compilation cost can be ignored, they are language-
specific, and they may be missing associations. A general thesaurus will contain different links 
from, for example, a medical thesaurus. One way of capturing links between words would be 
to generate a thesaurus automatically. Methods include forming associations between query 
words and the term frequencies in selected documents (which can be enhanced after part-of-
speech tagging is used to verify results), and semantic analysis. 
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2.1.4 Latent semantic analysis 

A more recent method of determining how related words may be is latent semantic analysis 
(LSA) [8]. This works by mapping all documents in a corpus into latent semantic space, with 
each document represented as a vector, whose position is determined by the weights of its 
terms. Latent semantic space is usually high dimensional due to the large number of terms 
across a corpus. Then, a transformation is applied that reduces the number of dimension in 
this space, to help better approximate the proximity of documents. This should have the effect 
of placing documents that contain many similar words close to each other. 

The effect that this has in grouping words with similar meaning comes from the way that 
similar documents are grouped, and the dimensional reduction. A document containing them 
phrase “desert weather” may end up being close to one on “Saharan meteorology” as they 
contain many common words with similar tf.idf weights, despite the actual lexical symbol 
(word) for the phrase being different. This should give LSA the ability to detect synonyms on its 
own, without need for external knowledge, such as a thesaurus, and provides an alternative to 
the orthogonality of axes suggested by the vector model. Further, the problem is reduced in 
size. 

This grouping also allows for the mapping of groups of words as “concepts”; for example, there 
may be a set of documents that all contain significantly similar tf.idf factors for words such as 
“Gobi”, “desert”, “Sahara”, “sand”, “drought” and so forth. This relation between words could 
not be discovered via stemming, and would take extensive thesaurus analysis to discover 
otherwise. 

A disadvantage of LSA is that is cannot distinguish homonyms; so, although documents 
containing “sand” and “desert” would have a degree of distinction from those containing “sand” 
and “woodwork”, some weight would still exist between the two uses of the word “sand”. Given 
its enormous automated gains over stemming or thesaurus based approaches to word 
expansion, this is not of huge immediate concern. 

 

2.1.5 Term frequency 

The frequency of a search term in a document can be an intuitively good measure of how 
relevant it would be. For example, a document containing the word “cat” 17 times may be more 
relevant to a search for “cat” than a document that only contained it say 5 times. 

However such a direct measure fails to take into account the length of the document; it’s fine 
to have the word cat in 17 times instead of 5, but if the document with higher frequency is very 
long (or the one with lower frequency very short) then the situation becomes less clear. To 
remedy this, it is possible to take into account the document length and then calculate a 
keyword density. 

Document Search term frequency Document length (words) Keyword density 

A 17 1000 1.7% 

B 5 80 6.3% 

 

Table 2.1 Search term frequency and corresponding keyword density  

This way, despite document A having a higher keyword frequency, document B would be the 
more relevant document. This keyword density metric is trivial to calculate as a document 
feature. 

The importance of individual words in determining relevance is also a factor. Common words 
such as “try” and “the” will be found in many documents inside a corpus. When these words 
are used as part of a query, providing those documents that are most dense with them near 
the top of the result set may not be the best strategy. Other words used in the query could 
have much more value in determining relevant documents. For example, given a query such 
as “causes of cancer”, providing results dense with the word “of” with the same priority as 
those than contain “cancer” or “causes” is misleading. 

To this end, a damping factor can be applied to the term frequency that is derived from how 
common the term is across all documents in the corpus. Because each document may have a 
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different word density, instead of counting all occurrences of the term across the entire corpus, 
only the number of documents containing it is counted. 

For example:  

Term Total corpus frequency Number of documents containing term 

insurance 10440 3997 

try 10422 8760 

 

Table 2.2 Frequency of terms across a corpus, and the number of documents that use the 
term [1] 

In the above example, although both words are similarly frequent across the corpus, 
“insurance” occurs in many fewer documents. We can use this knowledge to give “insurance” 
greater weight in queries, as documents containing this are more likely to be relevant than the 
84% that contain “try”. 

We can derive a metric based on term frequency and inverse document frequency that ties 
together these two features. Formally this measure of tf.idf [27] (term frequency × inverse 
document frequency) for a single document and term pair can be defined as: [17] 

 

i
jiji

df
Ntfw log ))log(1( ,),( +=  

Formula 2.1 – Term frequency × Inverse document frequency 

Where: 

N  is the total number of documents 

tfi,j  is the frequency of term j in document i 

dfi  is the document frequency of term j 

This measure can be directly used as a vector weight for the vector space model. The 
damping part of the inverse frequency measure scales the individual term frequency into a 
much more friendly form, and also gives words that do not occur frequently in the corpus a 
chance to gain extra weight. 

A potential disadvantage of td.idf is that words that occur in the corpus very infrequently (e.g. 
once or twice) are given a very high idf factor. This means that although documents containing 
these words will rightly leap to the top of results, the weight of other words may be over diluted 
in subsequent listings. 

 

2.1.6 Stopwords 

While tf.idf goes a long way into making sure that the commonest of words (such as “and” or 
“the”) do not affect search results any more than absolutely necessary, there is still 
computational effort applied into computing these small weights, and some end effect derived 
from the minor words. 

This can be completely eliminated by compiling a list of words that have no information 
relevant to the query or document’s content. These words will all be extremely common and 
have little or no informational content and certainly no contribution to selection of document by 
single keywords. They tend to be prepositions, pronouns, numbers, or conjunctions. 

A list of stop words for a particular language can be taken from an external source, which is 
simple and tends to yield a comprehensive list. The disadvantage here is that some words 
which have unusual importance for a particular task may be excluded, and that it is time 
consuming to check the list over. 
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2.1.7 Indexing 

As the size of a corpus grows, it becomes harder and harder to iteratively search over it and 
run search operations. It is particularly futile to examine documents for words that are not there 
every time a query is run, especially if the query consists of many key terms. Each term will 
involve the examination of each document to see if it contains the term; thus, the complexity of 
the task grows linearly with both the size of the corpus and the number of query terms. 

 

Forward indexing 

To reduce the amount of computational effort required in searching through documents, an 
index of the documents in the corpus can be built. This is usually a file sorted by document 
identifier. Each record in the file would contain the document identifier, and then a list of words 
in the document. The amount of data stored can be shrunk by removing stopwords and 
stemming the remainder; so, for example: 

Document (excerpt taken from [3]): 

“It certainly undermines still further the original pretense that the 
police were firing in response to Panther gunshots, confused by 
unfamiliar surroundings. The Chicago press has reported that the FBI 
agent to whom O’Neal reported was the head of Chicago Cointelpro 
directed against the Black Panthers and other black groups. Whether 
or not this is true, there is direct evidence of FBI complicity in 
the murders. 

 

Corresponding record in forward index, with stopwords, case information and punctuation 
removed: 

“undermines still original pretense police firing response panther 
gunshots confused unfamiliar surroundings chicago press reported fbi 
agent oneal reported head chicago cointelpro directed against black 
panthers black groups true direct evidence fbi complicity murders” 

 

To reduce the need for storage further (which makes sequential searching of the text quicker), 
multiple words can be removed, and instead replaced by an optional word count. Further, the 
text can be ordered alphabetically, to allowing rapid seeking, perhaps via binary partitioning. 
So, we could end up with: 

“against agent black,2 chicago,2 cointelpro complicity confused 
direct directed evidence fbi,2 firing groups gunshots head murders 
oneal original panther panthers police press pretense reported,2 
response still surrounding true undermines unfamiliar” 

 

This text is much easier to search through for key terms. Stemming the words would further 
reduce the amount of data stored, in this case grouping “panther” with “panthers” and “direct” 
with “directed”. 

However some data has been lost with reordering, stemming, and the removal of stopwords, 
punctuation and case information. This denies the option of studying some metrics associated 
with keywords, such as their position in the document, where they occur in a sentence (useful 
for part of speech tagging) and their formatting. Also, searches over this forward index are still 
relatively computationally intense especially given multiple key terms. 

 

Reverse indexing 

A reverse index (or inverted index), instead of being sorted by document ID, is sorted by word 
ID. This allows for the rapid lookup of data given a word – much more so than going through 
individual documents [17]. Reverse indices consist of a file ordered by word ID. Each word ID 
has a list of documents containing that word associated with it, as well as any optional data. 

An example (very small) reverse index might look like: 
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Word Documents 

Cat 1,5,8 

Fish 1,9 

Sahara 2,7 

Sand 2,3,4 

Turkey 6,9 

Woodwork 4 

 

Table 2.5 – A simple example reverse index 

Significant performance increases can be made by representing the index in this way. Instead 
of examining each document to see if it is a match to the keywords used, only the documents 
listed by each keyword need be examined. The others can be discarded as irrelevant. 
Documents are indexed by deriving a list of words they contain, usually after stopword 
removal, and adding each word to the reverse index. This leads to the bulk part of 
computational work being done offline as documents are processed, which allows for greater 
flexibility than having load whilst online operations such as queries are performed. 

Whilst stemming can be used to create a larger set of match candidates at search time, and 
then these can all be searched for, a much simpler approach would be to stem words found in 
the document at indexing time, and store stems instead of complete words in the reverse 
index. This reduces the number of lookups needed per query on the reverse index, and also 
reduces its size. In the worst case, stemming will be performed on a single word query, have 
no effect, and a single word’s document list will be discovered. Performing stemming on the 
reverse index leaves flexibility as to whether or not to use stemming when considering 
returned documents for ranking, depending on if it is performed in the forward index, thus 
allowing a distinction between stemmed and complete matches. 

Such a simple reverse index as described above omits much of the information about words 
found in documents, such as the density of the term or its position, and would have to be 
combined with a  fairly rich – or even unaltered – forward index for this information to become 
available. Doing this would also involve either a complex forward index and a lookup to each 
document every time a search was conducted, or computation of extra metrics (e.g. term 
density) for every search. As documents tend to remain unaltered once indexed (depending on 
the setting), this seems inefficient. 

One time-saving device could be to include some data about terms in the corpus and in each 
document as part of the reverse index. For example, tf.idf could be calculated more quickly by 
including the term frequency in each entry in the reverse index, so that the list is now of 
document ID and word count pairs. 

 

Word Documents Frequency 

Cat {1, 4}, {5, 34}, {8,12} 50 

Fish {1, 19}, {9, 7} 26 

Sahara {2, 22}, {7, 12} 34 

Sand {2, 19}, {3, 14}, {4, 6} 39 

Turkey {6, 4}, {9, 9} 13 

Wood {4, 8} 8 

 

Table 2.6 – A reverse index allowing for tf.idf to be calculated 

This would allow idf to be derived given the size of the corpus. The total number of 
occurrences of each term could easily be calculated, by summing its frequency in all 
documents it is found in simply by counting the record size. Alternatively, this total frequency 
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could be stored with the word. In the case of corpora where the total number of documents 
changes infrequency, idf for each word could even be stored with the word record. 

 

2.1.8 Document formatting 

With hypertext documents, typically presented in HTML, the presentation of individual terms is 
machine readable and can thus be taken into consideration when indexing and searching over 
documents. Two readily available metrics that can be simply implemented are: 

• Font size and style 

Seven standard levels of heading are available in HTML, outside of normal text. These are 
denoted <h1> for highest priority headings, down to <h7> for minor headings. In addition, 
text not denoted as any kind of heading (body text) can be assigned a lowest priority. An 
example of a phrase tagged as a second-level priority heading in HTML is: <h2>Sahara 
Desert</h2>. Further, text can be designated as bold, italic, emphasised, and strong, 
using <b>, <i>, <em> and <strong> tags respectively. Emphasised and italic text is 
considered semantically equivalent in current revisions of HTML, as are bold and strong 
text. Strong text will be given a higher priority than emphasised text, and both have higher 
than default priority. This leaves a total of 10 ordered font classes. 

• Word case 

Case sensitivity is not straightforward to incorporate into the system. If we start by 
assigning a case value to a word based on the percentage of letters that are uppercase, 
then this value will quickly become unfairly skewed by word length. Categorising word 
case into class would overcome this; a set of three possible classes could be “all 
uppercase”, “sentence case” and “first character lowercase”. This however could be 
thrown off by author style; a document entirely in caps could incorrectly attain higher 
rankings. Therefore, to reduce this impact, the mean case value over a document would 
be calculated, and a case metric produced for each word based on how different it is from 
the document average. 

For example, if we arbitrarily assign a value of 8 to “all uppercase”, a value of 3 to 
“sentence case” and a value of 1 to “first character lowercase”, then the average value for 
a document all in capital letters will be 8. Therefore, the relative case value for capitalised 
words inside this document would be derived by determining the value for the word (8) and 
subtracting the document average (8) – e.g. 0. This system is simplistic and should yield 
satisfactory results; it will not cope well in the case where documents are in inverted case. 
Such behaviour could perhaps be seen as encouragement to authors make their 
documents more readable and conform to normal English grammar rules. 

 

Deriving hit lists from hypertext documents 

One problem with simple reverse indices is that they risk losing data about the instances of 
words inside listed documents. It is not directly easy to store data on capitalisation, formatting, 
and position of each individual word without using a more complex storage structure. Early 
iterations of Google overcame this by implementing the both the forward and reverse indices 
as files of records containing a document or word identifier (respectively) followed by a hit list 
[21]. As defined by Page: 

“A hit list corresponds to a list of occurrences of a particular word in a particular document 
including position, font, and capitalization information.” 

This allows for the lossless capture of any data required from a source document. 

 

2.1.9 Existing IR systems 

With the advent of the web as a collection of loosely related rich hypertext documents, there 
has been a proliferation of interest in and instances of information retrieval systems. For 
example, the Google search engine [21] is a mature and complex IR system working over 
billions of hypertext documents. 
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The SMART IR system [26], developed in the 1960s, was a leading development and research 
platform, replicated at many academic institutions. A good quantity of material based on 
studies using and experimenting with the system is available. 

 

 

2.1.10 N-gram analysis 

A document can be said to consist of unigrams – that is, words. These are already analysed 
by the tf.idf algorithm, which can on its own be used for ordering candidate documents for a 
single word query, and without too much effort, multiple word queries. Documents could also 
be seen as consisting of a set of both unigrams and bi-grams; that is, sequences of two words. 
For example, the following sentence: 
“Jack sat on the big fat mat” 

Has 7 unigrams, and 6 bigrams (‘Jack sat’, ‘sat on’, ‘on the’, ‘the big’, ‘big 
fat’, ‘fat mat’). The tf.idf analysis could then be performed with the bigrams, to assist in 
multiple word searches. This will only help if words are ordered the same in both search query 
and document body. This can be extended for trigrams, 4-grams, or sequences of N words; 
hence “N-gram analysis”. 

Following modest n-gram generation, it would be possible to filter out statistically unimportant 
n-grams from a corpus. For example, N-grams appearing once are unlikely to be strong 
indicators of topic, and N-grams appearing over different classifications of document may be of 
little use unless they are particularly common in a small subset of classes. This would reduce 
the size of the problem to manageable proportions.  The maximum value of N would depend 
on the point at which no more useful N-grams appear. 

N-gram analysis could be used to generate training data for an ML algorithm. Feature 
reduction can be performed, by first removing stopwords and rare N-grams of frequency fmin or 
less. Words occurring with a high frequency in one class can then be retained, using a 
measure such as χ2 [19] or similar. The top k N-grams can then be retained, and their 
presence used as a Boolean feature. All documents in the corpus can then be represented as 
a list of the significant N-grams they contain. This is a simplified version of the approach used 
in [20]. 

 

2.2 IR system evaluation 
To be able to judge how good a system is at retrieving information, some kind of objective 
metric is required. For these metrics, we will assume that results are provided as an ordered 
set of document abstracts and titles, truncated to show only the top n most relevant items. 

 

2.2.1 Recall and Precision 

A perfect IR system would retrieve every single relevant document that was available, given a 
query, and no others. The proportion of these relevant documents recommended by the IR 
system is known as its recall. For example: 

 

availabledocumentsrelevantofnumbertotal
returneddocumentsrelevantofnumberrecall

     
    

=  

Formula 2.2 Recall in IR systems 

Thus, recall is a measure of the volume of relevant documents returned from a search, and 
has a value in the range 0 – 1. 

There is one problem with recall in that it is easy to maximise without actually providing useful 
results. For example, an IR system that returns the entire corpus as a search result will always 
provide maximum recall, as the set of relevant documents will always be a subset of the entire 
corpus. 
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To this end, the precision of a search is also calculable. Precision is a measure of how precise 
the result set is, taken from the proportion of the result set that is relevant to a query. 

 

returneddocumentsofnumber
returneddocumentsrelevantofnumberprecision

   
    

=  

 

Formula 2.3 Precision in IR systems 

Precision, like recall, has a value in the range 0 – 1. Maximum precision can be achieved by 
returning a very small number of documents that are all relevant; it does not take into account 
how many unshown relevant documents there might be. 

Both precision and recall are easy-to-calculate measures of the performance of an information 
retrieval system. They still demand some external estimation of whether a document is 
relevant to a query or not to be calculated. 

 

2.2.2 F-measure 

The factors of precision and recall are linked; selecting the entire corpus yields complete recall 
and low precision, and selecting only a very low amount of highly relevant documents will give 
a high precision accompanied by low recall. The two factors can be combined into a metric 
defining the tendency to return many documents with low relevance or few documents with 
higher relevance. This is known as the F measure [29] and defined as follows: 

RP

F
1)1(1

1

αα
α

−+
=  

Formula 2.4 – F measure 

Where P and R are precision and recall, respectively, and α is a factor of bias toward P or R. A 
higher α leads to recall being preferred over precision, and a lower α favours precision over 
recall. 

Often α = 0.5, where recall and precision are considered equally important. In this situation,  

RP
PRF
+

=
2

5.0  

Formula 2.5 – F measure with precision and recall equally balanced 

 

2.2.3 Rank of selected document 

The rank of the abstract chosen for further examination is a simplistic metric that is trivial to 
implement. Although it has noise and normalisation issues as described in 2.3.3, it’s a very 
easy metric to obtain and has still some value, especially with large sample sizes. 

 

2.2.4 Average precision 

One way of assessing a set of results when the ideal ordering and IR system behaviour are 
known is to calculate the precision after each item in the result set, and takes the mean over 
all items. This is known as the uninterpolated average precision of the results [17,29]. 
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Produced ranking  Ideal ranking Average precision 

Relevant Relevant 1.0 

Relevant Relevant 1.0 

Irrelevant Relevant 0.67 

Irrelevant Relevant 0.5 

Relevant Relevant 0.6 

 

Table 2.7 – Uninterpolated average precision 

As can be seen from the data above, this particular result set has a mean average precision of 
0.6. This could be observed over many result sets to get an overall estimation of system 
performance. 

 

2.2.5 Kendall’s tau 

Another metric for evaluating a ranked set of results against an ideal ranking is found in 
Kendall’s τ [13,19]. The measure has a maximum value of 1 for perfect ranking matches, and 
a minimum of -1 for completely dissimilar rankings. 

This metric involves counting the number of concordant and discordant pairs in a ranking. A 
pair of items is concordant if both the rankings choose to place both items in the same 
position. 

Ranking A Ranking B Status 

Document 1 Document 1 Concordant 

Document 2 Document 2 Concordant 

Document 3 Document 3 Concordant 

Document 4 Document 5 Discordant 

Document 5 Document 7 Discordant 

Document 6 Document 6 Concordant 

Document 7 Document 4 Discordant 

 

Table 2.8 – Concordant and discordant pairs by Kendall’s τ measure 

 

Quoting from [10],  

Kendall’s τ can be defined based on the number P of concordant pairs and the 
number Q of discordant pairs. 

Kendall’s τ can be defined as: 

QP
QPrr ba +

−
=),(τ  

Formula 2.6 – Kendall’s τ measure 

So, the above example would have a τ of 1/7, or approximately 0.143. 

This measure neglects cases where a large part of the ordering is correct, but slightly offset; 
for example, if an IR system produces a ranking ordered the same as the ideal ranking but for 
there being an extra document inserted at the first position, no concordant pairs will be found. 
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2.3 Human interaction with IR systems 
The way that users behave whilst using IR systems can be indicative of the performance of the 
system and provide a useful insight into how humans go about locating information. 

 

2.3.1 Query refinement 

When users are looking at data, they typically have anof their requirements. Based on this, 
they will select a few keywords to use in a query, and submit this query to an information 
retrieval system. The system will then return a set of results, typically represented as abstracts 
and references to their parent documents, from which the user may select a particular line of 
investigation. 

There is a significant risk, depending on the user and the specificity or scarcity of the 
information that they require, that there will not be a suitable document in the first set of results 
returned. One step to take to resolve this situation is to refine the query – especially in systems 
with elements derived from the Boolean search model – so as to alter the result set, in the 
hope of discovering more relevant documents. Another method for attempting to discover 
more documents in systems that sort results and initially return on the best matches is to seek 
further down the returned list of potentially relevant documents in the hope of discovering one 
that matches the requirements. 

Lau & Horvitz [16] studied the logs from a busy public IR system and categorised query 
refinements into classes, including specialisation, generalisation, and reformulation. It was 
possible (to some extent) to gauge the type of query reformulation based on the time interval 
between requests for data, and also a measure of similarity between query phrases. This data 
could be extrapolated to better understand user intent. 

There is a potential for information loss in query formulation – that is, between the user’s initial 
desire for information and a query that they submit to an IR system. The specific data that the 
user wants will often have to be first translated into words as they attempt to build a query, and 
then biased by the user’s former experiences of entering queries into IR systems and using the 
results returned. This step is a point of data loss that is uncontrollable as it occurs before initial 
interaction with the IR system. 

 

2.3.2 Clickthrough analysis 

As mentioned above, working out the performance of an IR system often requires some kind of 
external metric and subjective analysis. A direct approach to evaluation could be an explicit 
round of questions aimed at the user, asking them to subjectively gauge the experience. 
However this is time consuming to conduct and gather a large amount of data from, and 
subjects are often unwilling to donate their time and effort to provide such feedback. 

A certain amount of logging can be taken from interactions with IR systems with minimal 
overhead. Generically, the most basic kind of data required would be; 

• The query itself 

• Some data about the result set returned 

• A means of uniquely identifying users 

In the case of web-based IR systems, some of this data is automatically available as part of 
many popular web servers’ logging configuration. For example, the Apache web server, which 
includes time of request, the address of the requesting computer, and the name of the 
resource requested (its URL). Each log entry is time and date stamped to the latest second, 
which can serve as logging the time of query submission. The address of the requesting 
computer can be used as a unique identifier in most cases, with some exceptions. Further, the 
URL part of the log entry can contain the query used, as long at the HTTP GET method is 
used (form data is typically sent with the POST method, whose parameters are not explicitly 
get logged by Apache). Data on the result set is not logged as this is generated by application 
code on a much higher level than the Apache server operates; instead, it would have to be 
logged elsewhere by the IR system. 
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This data allows for the analysis of queries used, an approximation of the recall and precision 
value of the system (given extensive and possibly manual analysis of the corpus searched 
over in comparison with each query used), and analysis of the query refinement process. 
Whilst these are good metrics to have, they are either expensive to calculate, or do not 
produce much direct feedback on the performance of the system. 

It is possible to increase the value of log analysis by logging more variables associated with 
the search process. For example, logging the position of the result clicked on can give an 
approximation as to how users see the result set (given that result sets are ordered). 
According to the probability ranking principle [29], documents that are more likely to be 
relevant to a query should be at the top of the result set (when ordered); thus, once users 
evaluate the result summary presented to them, selecting a higher-ranked document is a likely 
indicator that the IR system is working well, and selecting a low-ranked document could mean 
that relevant documents are being incorrectly assessed as irrelevant. 

Logging the position of the selected document [2] is a simplistic and trivial approach, and adds 
some value to the process of feedback collection. It does have some issues in that the data is 
noisy and still subject to variations per individual user and query. If there are a large number of 
very similar and relevant documents, selecting the tenth or fiftieth document may not be an 
indicator of poor performance; similarly, if three documents are returned and the third is 
chosen, then this is possibly a likely indicator or bad performance. Also, human users are 
liable to misreading results or accidentally skipping over candidate documents, which would 
produce an untrue clickthrough position. Attention could also be paid to the frequency of 
certain searches, with the average position of more commonly sought after words being more 
heavily weighted when calculating average system clickthrough position. However despite its 
extreme simplicity and flaws, this metric does have some value once a sufficiently large 
amount of data can be collected. 

Some in-depth analysis has been done on human-computer interaction using IR systems 
through a GUI, where results are returned in an ordered manner. This matches the setup of 
many web search engines and commercial systems and seems an appropriate setup to 
examine. Eye tracking studies [11] have shown that users tend to read through results in the 
order that they are presented. There is also a significant focus applied to evaluating the first 
one or two results before considering any of the remainder of the results. The WIMP 
environment and the use of the mouse to select a result lend the term clickthrough analysis to 
the practice of examining user actions in these systems. 

Behaviour observed in these studies can be coupled with the rank of the selected document to 
provide information on which documents in a result set are relevant and also those that may 
have been considered but were not the selected item [23]. For example, if a user selects the 
third document in a set, it is assumed that this document is relevant to the query (which is 
positive feedback) and also that the two documents above are not relevant. Further, if the first 
result in a set is selected, not only can the evaluation of this document as relevant be 
reinforced, but also the second document in the set can be negatively assessed, as we know 
that the user has probably evaluated both of these abstracts in the process of their search. 
This provides both positive and negative feedback on some documents for every single query 
when submitted. 

 

2.3.3 Issues with implicit feedback 

Implicit feedback is gatherable, but as mentioned in [23], not accurate all of the time. The most 
confidence in user behaviour given an observed log pattern is only 84%; this drops to 62% for 
some actions. If this data is used, some consideration needs to be taken to ensure that this 
uncertainty is reflected. As both implicit log data and explicit user viewpoint will be gathered as 
part of a study (see 6.2.2 below), we can assess the accuracy of our inferred user opinions 
and see how accurate they are. This could possibly then be taken into account by requiring 
more instances of positive or negative feedback related to a document depending on how 
confidently user opinion is assessed. For example, if a particular log pattern represents a type 
of behaviour only 80% of the time, it may be possible to require 1.25 instances of this pattern 
before feedback is applied. 

Also, in [16], relationships between the type of query just entered and the delay before 
subsequent queries (if any) from a single user is used to develop a statistical approach for 
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estimating a query type (see 2.3.1 query refinement above). This could in turn be used to 
weight the confidence of each implicitly observed behaviour. 

 

2.3.4 Ranking effect 

In [26], the Ranking effect is described, where queries are modified based on data from 
document references. This is akin to submitting a query to an IR system and then declaring a 
document in the result set as being more relevant to that query. Any relevant documents 
declared will then be ranked higher for this query. We expect to observe this affect after 
applying a machine learning algorithm to human behaviour gathered. 

 

2.4 Machine Learning 
To get best performance out of an information retrieval system based on feedback, a 
procedure of reacting optimally on the feedback is a great boon. It allows for efficient use of all 
the data available. An algorithm that can take an amount of historical data, possibly noisy, and 
learn rules from it would fit the bill. Machine learning provides algorithms that can adapt to and 
learn from a set of training data much faster and hopefully more optimally than a human user 
attempting to find correlations and trends. This kind of unsupervised approach is suitable for 
use in improving the performance of our IR systems. 

 

2.4.1 Decision trees 

When instances of a problem are presented as a set of attribute values, and the task is to 
classify unseen instances into one of a set of classes, the classification process could be 
tackled as a series of decision based on attribute values. For example, whilst discussing 
books, a crude piece of logic to distinguish between types of publication given the binding type 
and cover flexibility could be: 

If COVER_FLEXIBILITY = hard 

 TYPE = “hardback book” 

ELSE 

 IF BINDING_TYPE = spine 

  TYPE = “paperback book” 

 ELSE 

  TYPE = “newspaper” 

 

There are obvious omissions here, such as how to handle glossy magazines with spines. But 
for example’s sake, it is possible to translate this logic into tree form, with each node being a 
decision, where the decision process begins at the root, and terminates with classification at a 
leaf. This is known as a decision tree. 

The process of choosing an attribute to make decisions upon can be governed in various 
ways. The ID3 algorithm [18] uses an entropy-based information gain metric, where it chooses 
an attribute that will contribute most to determining class at any one point in the tree for 
evaluation, and adds a node for it. This attribute is then removed from the set of attributes 
available for evaluation. The process continues recursively, with leaf nodes being left in cases 
where the only applicable instances are all in the same class, until no attributes remain. 

The major issues with ID3 are that it is a direct hill climbing algorithm with no backtracking; 
thus, it is prone to finding locally optimal solutions instead of a globally optimal tree. Further, its 
information gain measure can be misdirected by attributes that have many potential values; as 
a result, ID3 decision trees are often very wide at the top and make decisions based on 
narrower sets of outcomes as depth increases. Also, ID3 is unable to cope with real-valued 
attributes. 
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C4.5 is a decision tree algorithm based on ID3 that implements backtracking, tree pruning, the 
ability to cope with real values, and due to its backtracking, it not as easily misled by 
information gain. 

 

2.4.2 Neural nets 

The human brain is composed of a large network of neurons, each with multiple inputs and an 
output that activates once certain levels have been reached at the inputs. An attempt to model 
this behaviour and thus copy human thinking ability has grown into a powerful machine 
learning algorithm in the form of artificial neural networks [18]. The networks typically used in 
machine learning have nowhere near the scale of interconnection found in the human brain, 
which consists of around 1011 neurons each connected to around 104 others. For comparison, 
ALVINN [18] (a system that can steer a car down a highway) has around 1000 inputs, 4 
internal neurons and 30 outputs. 

A simplistic type of machine based neural net is comprised of units called perceptrons. These 
have a set of weighted inputs and a single output. The output is set to a value of either -1 or 1, 
depending on whether the sum of the input values received is over an internally set threshold. 
These units are connected to each other in networks of 1 or more layers; a 1-layer network 
typically has just one perceptron. 

 
Figure 2.1 – A perceptron 

 

Perceptron input weights are derived using an algorithm that converges on a hypotheses 
matching the training data. Weights can be assigned random values initially, which are 
adjusted by a value derived from the target outputs at each step as follows: 

xotw )( −=Δ η  

Formula 2.7 – Perceptron weight adjustment [18] 

Where t is the desired output with the current training instance, o is the current output of the 
perceptron, x is the current input value, and η is the learning rate. The learning rate sets the 
scale of changes made to the weights; a higher learning rate allows more mobility over 
potential weight values, which is good for a small training set, but can prevent weights from 
accurately converging on ideal values. A smaller learning rate is preferable, as long as there is 
enough training data available. 

A neural net consists of perceptrons linked in a non-cyclic graph. They will have an input for 
each field of training data, and an output. The simplest net has one perceptron. This can be 
grown by adding more perceptrons in different layers. WEKA – a tool for experimenting with 
machin learning algorithms – builds nets by creating two output perceptrons, and connecting 
every input to each one. 

inputs output 
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Figure 2.2 – A neural network in WEKA with no hidden layers 

Hidden layers can be user configured. The default setup is to have one layer of n neurons, 
where n is the sum of the number of attributes available in the training data and the number of 
possible output classifications.  

 
Figure 2.3 – A neural network in WEKA one hidden layer 
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As can be seen from figure 2.3 above, even one layer with a modest number of hidden layers 
can lead to a large number of relationships being created. Training such a net will involve a 
correspondingly large number of calculations. 

 

 

2.4.3 Bayesian learning 

The probabilistic theories of Bayes include methods for calculating the probability of events 
given certain situations. This can be mapped into machine learning by attempting to calculate 
the probability that an instance belongs in a certain class, based upon the statistical 
relationships and data found in a training set. 

The naïve Bayes classifier is capable of learning the class of instances given a set of attributes 
associated with each one, and then estimating the class of future unseen instances. Instead of 
calculating the probability of an attribute set given a classification, the naïve Bayes classifier 
assumes that all attributes are independent (which is not necessarily true). 

 

2.4.4 Instance based learning 

Machine learning algorithms can be termed as lazy and non-lazy. Those that are non-lazy 
perform calculation when trained; lazy algorithms simply store the data. Instance based 
learning is a type of lazy learning algorithm, unlike the others discussed which are all non-lazy. 

A straightforward instance based learning method is to store all the training data as points in n-
dimensional Euclidean space, where n is the number of attributes per instance. Unseen 
examples can be classified by their proximity to existing stored points in this space. This 
makes both training and classification trivial tasks. 

The k-Nearest Neighbour algorithm operates as described above, and classifies new 
examples by examining the k nearest points and designating the new instance as the most 
common value in this set of k examples. Issues with this method occur with noisy data, when 
some axes may have values that are not fair estimations of overall behaviour, and also when 
only a few of the attribute values actually have any bearing on the classification of a particular 
new instance. To this end, attributes / axes can be weighted differently, as described in 2.1.4. 

The implementation of k-Nearest Neighbour used will be K* [4]. This uses an entropy-based 
distance measure to attempt to reduce the distorting impact of noisy data. 

 

2.4.5 Training and testing machine learning algorithms 

Machine learning algorithms need to be trained before use. This is typically achieved by 
sequentially passing training examples to an algorithm. Depending on the algorithm used, the 
training examples may be a vector of real numbers, or a group of nominal attributes. Usually 
some translation between various input types is possible. The final classification of each 
training example is supplied alongside the training data. This allows the algorithm to build 
associations between the training data and the final value however they see fit. 

Once all the training data has been input, the algorithm is said to be “trained”. It can be 
evaluated by passing it the attribute values of further data – test data – and seeing whether its 
estimation of the final classification is accurate or not. Instead of manually supplying testing 
values, it can be easier to automate these tests. Often, if a fixed body of training and 
evaluation data is available (for example, a limited data capture), this can be split into training 
and test sets. The split can be varied to provide more training data or a more thorough test. 

It’s good general practice to repeat any test before confirming the result, and ML algorithms 
are no exception. Each test should be repeated, perhaps using a different random seed. If a 
fixed data set is used, it’s recommended that the selection of examples in the training and test 
data be mixed around, even if the sizes stay the same. This will prevent any unusual examples 
skewing data. 
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2.4.6 Overfitting 

When there is only a limited amount of training data available, (which is always the case when 
algorithms are not trained ad infinitum) it is possible to learn the training data too closely. This 
would occur by discovering nuances unique to the training set available and adapting to them. 
The adaptations typically detriment the ability to correctly classify the unseen data in the test 
set. Overfitting typically occurs when an algorithm is trained too much or in a very fine-grained 
manner. 

Overfitting can by some extent be avoided by setting aside some data and measuring 
performance on this data after each training example has been processed. As soon as a 
significant reduction in accuracy is found, training can be stopped. This set aside data can be 
called a “validation set”. 

 

 



 Machine learning techniques for document selection 21 

 

  

21 

3. Requirements and analysis 
 

3.1 Aims and objectives 
More often than not, no feedback is gathered on the performance of web-based search 
engines. This leaves the search systems and their operators utterly clueless as to whether or 
not the system is behaving as intended, without extensive explicit testing. A vast body of 
feedback information is available in the form of metrics than can be derived during human 
interaction with such systems. It seems reasonable to attempt to optimise the performance of 
such a search system by automatically adjusting its behaviour based on feedback generated 
by its users. 

The aim of the project is to compare the performance of machine learning algorithms at the 
task of information retrieval. This will be achieved by considering the internal mechanics of a 
basic IR system and the capabilities of some machine learning algorithms, and attempting to 
construct an interface between the two. A basic IR system will then be built that allows for the 
storage and retrieval of hypertext documents. Decisions affecting which results to present in 
response to user queries, and the ordering of these results, will be made by a machine 
learning algorithm. The machine learning algorithm will have been trained to produce what are 
believed to be optimal results. 

We should learn about information retrieval theory and practice, the strengths and weaknesses 
of a set of machine learning algorithms at assessing data associated with human behaviour, 
and human interaction with web-based information retrieval systems. 

Further, it is important to represent the problem of teaching an algorithm to select documents. 
This will require a volume of training data and considerable effort in getting a high level of 
performance out of any learning algorithm. Various parameters will be experimented with when 
it comes to building the training sets and also the behaviour of the ML algorithms themselves. 

We will compare a small set of machine learning algorithms at the task of information retrieval 
given a keyword-based query with a simple baseline IR system that does not make any use of 
feedback. 

The primary focus here is on the IR performance of the system and the learning efficiency of 
various algorithms. System resource usage is not particularly relevant and certainly should not 
be a limiting factor. Thus, resource-oriented performance metrics are only given secondary 
consideration, if at all. 

 

3.2 Which ML algorithms to use 
In order to uncover further avenues of activity and get a diverse evaluation of machine learning 
algorithms whilst observing only a small set, some care has to be taken over the content of the 
set used. Despite there being a wide range of machine learning algorithms to choose from, 
only the simpler ones fall under the scope of this project due to time considerations. Even with 
these restrictions, it could be costly to experiment with a more complex algorithm when the 
performance of simpler ones remains unknown. Thus, representative algorithms from major 
families are used. 

As decision trees form an easy to understand and powerful set of machine learning algorithms, 
it would be good to include a simple and well-examined decision tree based method. The C4.5 
algorithm is well developed, relatively simplistic, and capable of handling the data presented. 
Its predecessor, ID3, is perhaps too simple for the tasks, and has some restrictions (such as 
the inability to cope with real numbered variables) that make it unsuitable for some problem 
representations. 

Neural nets are of interest and again in their simpler forms, not too time consuming to 
understand and experiment effectively with. A simple perceptron based neural network could 
be used to classify documents based on training data provided. As neural nets cope well with 
noisy data, they seem well suited to the task. Further, the format of the training data should be 
straightforward to work with. We are also not too concerned with the internals of algorithm 
decisions, and much more so with the final results, so the likely unintuitive weights at individual 
perceptrons should not be a problem. 
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Bayesian learning is another simplistic and practical machine learning algorithm. Its non-
exclusionary behaviour based on input suits the potential noise that may be found in data 
derived from human behaviour. Its weakness in potentially requiring large amounts of 
computational horsepower is not taken into consideration under the scope of this project and 
so not a problem. A naïve Bayes classifier ought to be suitable for categorising documents 
given a keyword based query. This particular Bayesian learning algorithm is preferable as the 
potential hypotheses space could be very large due to the high number of document / query 
features, and unlike other Bayesian algorithms, it does not attempt to search through 
hypotheses space. 

Instance based learning is an example of machine learning algorithms that are classified as 
“lazy”. These are distinguished by the way that they react simply to stored training data. There 
is no dealing with anything outside of the known training set. 

The k-Nearest Neighbour algorithm can be tolerant to noisy data (which is something we 
expect to encounter) and again, relatively simple. It should also be possible to gain some 
insight into how its decisions are made, if required. K-Nearest Neighbour is however 
susceptible to situations where there are a large number of attributes but only a small 
proportion of them are relevant to the problem at hand; to get over this, attributes can be 
weighted differently, thus reducing the influence of less important ones by reducing their axes. 

All of these algorithms are easily accessible using the Weka software [15]. Data will need to be 
translated into arff format before loading it into this system, and experiments can then easily 
be conducted to test the performance of each system. 

 

3.3 Corpus usage 
A readily available corpus for inclusion in the project will be the product database of 
�Hwww.digital-cameras.com. Access has been granted to this data, as well as being able to alter 
and log the behaviour of the site search facility. Further, this corpus has been indexed by 
Google and other commercial web search engines, which may provide a basis for performance 
comparison. 

Other standard corpora to be used could include, the complete set of RFC documents (from 
�Hwww.rfc.org), and a variety of standard IR reference corpora. The TREC corpora could provide 
a useful sample; we will examine them to see if there is a set of suitable size that provides 
useful results. 

In the end, the following collections were used. These are included with the SMART 
information retrieval system, and available via anonymous FTP at 
�Hftp://ftp.cs.cornell.edu/smart/. A corpus is a set of documents; a collection is a corpus and 
some additional data. 

 

Name Documents Queries Description 

ADI 82 35 Very small 

CACM 1587 64 Titles (and sometimes abstracts) from the CACM journal 

CISI 1460 112 Titles and abstracts on information science, indexing and 
libraries 

CRAN 1400 225 The ASLIB Cranfield II collection [5] 

MED 1033 30 Abstracts of articles from a medical journal (MEDLINE) 

TIME 423 83 Articles from Time magazine in 1963 

 

Table 3.1 – Reference collections 
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These are mainly in a similar format and comprise: 

• Documents – a file containing all the documents 

• Queries – a set of reference queries, often quite verbose and in natural language, 
describing requests for information against the document set 

• Query relevance judgements – a set of document and query tuples, describing which 
documents are deemed relevant to each query. 

Some collections incorporate a degree of relevance to each query for each document/query 
tuple. This is particularly useful when testing a ranking problem; a Boolean “relevant or not 
relevant” judgement could lead to an overwhelming number of results being retrieved from 
queries on large document sets. However most collections simply declare this Boolean status, 
and rather than discard the bulk of testing data, we will attempt to train various algorithms to 
learn Boolean functions. 

 

3.3.1 Collection notes 
The only corpora that display any kind of variation in case are CISI and CACM. All the text in 
others is entirely lowercase, apart from Time, which is all in uppercase. Thus, the avgcase 
field for these corpora will be static across each document, and the case deviation features will 
always be zero. 

The Time stopword file is comprehensive and has been used in the processing of all corpora. 
An alternative candidate would be Salton’s [28]. Some other collections define their own 
stopword data, but one list of stopwords was used over all collections for consistency’s sake. 
This may lead to problems comparing anything but the Time corpus with other studies. That 
said, the application of tf.idf to keyword-based weights should make the impact of any words 
that slip through the net very low. CACM was the only other collection with a supplied 
stopword list. 

The CACM corpus contains only 1599 documents with words, out of a total 3213 documents 
(49.8%). The documents without words do contain titles.  

Instead of simply stating which documents are relative to a query, the Cranfield II collection 
goes further and provides an assessment of graded relevance. This is set into one of four 
classes, ranging from 1 which signifies a complete answer, to 5 which says the document is 
irrelevant to the query. These were manually derived [5,6]. A complete guide to the gradings 
can be found in Appendix B. 

The Time corpus has an unusual format, providing simply raw text for articles, which are 
entirely in upper case. There are no titles or abstracts. Queries are a simple string in upper 
case; only an identifying number is provided. 

 
3.4 IR techniques used 
An IR system that uses tf.idf, stopword removal, vector space calculations, overall case and 
position data, a forward and reverse index, and possibly also keyword weightings (see 2.1.5) 
will be implemented for testing ML performance after training data has been captured. This 
system will not implement hit lists as in [21], as there should be more than enough data to 
conduct an initial survey of learning algorithm behaviour without spending excess time coding 
this feature. 

 

3.5 Issues with using a classification approach 
To simplify the experiment, the ranking problem has been reduced to a classification one. 
There are some issues with taking this approach [24]. The inherent structure in the ranks of 
the classes is lost when data is sorted into seemingly uniform boxes (the classes). For 
example, if we are to rank films as “good”, “mediocre”, and “awful”, a ranking algorithm would 
be aware that good is positioned above mediocre, and that mediocre supersedes awful. The 
knowledge that a very highly ranked mediocre film could potentially be classified as good is 
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completely lost when the problem is treated as a classification one, as no information about 
relationships between classes is presented. 

Further issues with the classification approach occur when, for example, a large number of 
documents are returned in a single class for a search. In this case, some kind of internal 
ordering is required, to avoid the result set being an unmanageable mass of probably-relevant 
documents. This is more likely to be an issue as the corpus grows, and especially with broader 
queries (such as those containing a single phrase). 

A primary classification boundary can be found in the top two results; these are those that 
users focus on most as mentioned in [7]. The class representing the most relevant documents 
should correspond to this esteemed position, and perhaps have fewer documents assigned to 
it. 

 

 

3.6 Multi-phrase queries 
The only similarity measure mentioned so far that directly attacks the problem of dealing with 
multi phrase queries is the vector space model. A query phrase can be defined as a word, or a 
sequence of words contained in quotes, as part of a query. For example, cat is a single-
phrase query; cat “black hair” has two phrases; black haired cat has three 
phrases; and “black cat hair” has one. Any phrase containing more than one word 
should be search for as a whole string – this does inhibit the use of thesauri as they don’t often 
index alternative for multiword phrases. 

A straightforward way of tackling multi phrase queries would be to do a search for each 
phrase, and then weight the values found in each search according to the tf.idf value for that 
phrase, and sum the end result. This would take term rarity / frequency into account and 
should be a fairly simplistic measure to implement. 

  

  

 

3.7 Evaluation of ML methods 
The evaluation of learning algorithms should also be given some attention, as well as seeing 
how well the IR systems they will back perform. Metrics available include learning speed 
based on the number of examples required, final accuracy, and relative error. A high final 
accuracy is the main desired result. This could be achieved by adjusting the parameters the 
learning algorithm, and also by tuning the representation of the problem. 

Learning algorithms can also be evaluated using some of the IR metrics described above, 
namely precision, recall, and therefore also F measure.  

For Boolean classification problems, IR precision will be equivalent to the ML precision of the 
algorithm; that is, the proportion of the results correctly classified will be equal to those 
returned as relevant. 

PAC learning suggests a number of training examples that a ML algorithm should probably 
learn and approximate hypothesis from. This concept could also be used to provide an 
objective benchmark for the volume of training examples required to reach certain 
performance levels. It may also be interesting to see how the explicit and implicitly gathered 
data differ in the speed and quality of learning and system performance. 
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4. Design 
 

4.1 Processing reference collections 
The reference collections mainly follow a set format. There are at least three files; one 
containing documents, one containing natural language queries, and another associating the 
queries with documents deemed relevant. 

 

4.1.1 Document file 

Each line contains either a metadata flag (if it begins with a full stop) or data. The metadata 
flags are used to signify what type of information is about to follow. The various fields available 
are: 

Field Description 

I Document ID 

T Title 

B Book or journal that the data is from 

A Author 

K Keywords 

N Timestamp information relating to corpus creation 

W Words – the main body of the document 

X Encoded link and citation information, found in the CACM corpus 

Table 4.1 – Fields available in reference collections 

Not all of these are present in all corpora, and some are missing across a corpus; for example, 
the Cranfield collection does not specify timestamp information, and CACM has many 
documents that contain no “words” section. Example entries from a few corpora can be seen in 
Appendix D. 

A set of data (independent of any specific words) can be defined for any text document, 
describing features of that document. These are numeric and easy to automatically derive. The 
ones generated by the system and used in representations of the problem are as follows: 

 

Feature name Description 
numc Number of characters in the document 

numw Number of words in the document 

nums Number of sentences in the document 

nump Number of paragraphs in the document 

avgwlengthc Average word length, in characters 

avgslengthw Average sentence length, in words 

avgslengthc Average sentence length, in characters 

avgplengths Average paragraph length, in sentences 

avgplengthw Average paragraph length, in words 

avgplengthc Average paragraph length, in characters 

avgcase The average case of the document 

Table 4.2 – Document features 
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Texts are converted into UTF8 Unicode before being processed, using the Unix line break 
convention of just a single newline (\n). Tabs are replace with whitespaces before processing, 
and any runs of multiple whitespace characters reduced to just a single space. For the 
purposes of the above table, definitions are as follows: 

Character – a single byte 

Word – a sequence of non-space non-punctuation characters 

Sentence – a sequence of words, separated by spaces, and terminated by either a full 
stop or EOF (end of file) 

Paragraph – a sequence of sentences or words, terminated by a newline followed by 
a space (this convention is adopted across all common-format corpora; the Time 
corpus is hardly formatted at all and does not include any paragraph breaks). 

Average case is calculated by assigning a weight to both uppercase and lowercase 
characters, and multiplying these by the frequency of each type of character in the document, 
divided by the total number of characters (e.g. a simple weighted average). The defaults 
applied are 1 for lowercase and 3 for uppercase – intuitively, uppercase characters tend to 
have a lower frequency (there are only two in this paragraph) and so get a “boosting”. 

Other features that could be examined could include reading ease and further gradings of a 
discourse. These haven’t been included in order to keep the problem simple, although they 
shouldn’t get in the way of most machine learning algorithms. Only fields that are relevant and 
useful are ever used. 

 

4.1.2 Query file 

The query is in a similar format to the document file, and consists of query identifiers and the 
text of the query. They are in natural language and often contain many stopwords or 
extraneous data. Some ask multiple questions; for example, from the CISI set: 

.I 36 

.W 
What are some of the theories and practices in computer translating 
of texts from one national language to another?  How can machine 
translating compete with traditional methods of translating in 
comprehending nuances of meaning in languages of different 
structures? 

 

 

4.1.3 Query / relevant documents file 

This file and contains a set of lines, each with a query ID, then a document ID, and possibly 
some relevance judgements. In the case where multiple documents match a query, there are 
multiple lines with that same query ID, and differing document IDs. 

 

4.2 Word features 
Each document contains a set of words (possibly an empty set in some cases). The important 
words from here can be described by a set of features, relating them to their document. The 
ones that have been chosen for this study are: 



 Machine learning techniques for document selection 27 

 

  

27 

 

Feature name Description 
kfreq The frequency of the keyword 

kdensity 
The fraction of words in the document that are the keyword (kfreq / 
numw) 

kfirstpos 
Position of the first occurrence of the keyword, stored as a fraction 
of characters into the document 

kavgcase Average case of the keyword 

absavgslengthw 
Absolute average sentence length of sentences containing the 
keyword, in words 

devavgslengthw Deviation of absavgslengthw from average sentence length   

absavgwlengthc 
Absolute average sentence length of sentences containing the 
keyword, in characters 

devavgwlengthc Devavgslengthw in characters instead of words 

kpararatio Fraction of paragraphs containing the keyword 

avgsposw Average position in sentence of the keyword, in words 

avgsposc Average position in sentence of the keyword, in characters 

avgposinprelatives 
In paragraphs containing the keyword, the average ordinal of the 
sentence it occurs in 

avgposinpabsolutes 
In paragraphs containing the keyword, the average position of the 
sentence it occurs in, as a fraction of the paragraph 

avgposofprelativep The average ordinal of paragraphs containing the keyword 

avgposofpabsolutep 
The average position of paragraphs containing the keyword, as a 
fraction of the document 

kdensityinksent The density of the keyword in sentences containing it 

ksentratio 
The fraction of sentences over the document that contain the 
keyword 

 

Table 4.3 – Document:word tuple features 

Other features could include the vector proximity of the document to a query.  

 

 
4.3 Describing positive training examples 
An information retrieval system will have at its disposal a query (in its simplest for, a text string) 
and a set of documents. The goal is to return a set of these documents that should be relevant 
to the query. A reference collection provides a set of documents, a set of queries, and also 
associations between each query and documents deemed relevant. It could therefore be said 
that each relevant document returned for a query, coupled with that query, could be used as a 
positive training example. 

One way would be to take the document features that are independent of any keyword and 
add them to the training examples (see table 4.1). If there are underlying document features 
that show a relevant document, this should help them get picked up, provided they are in the 
calculated set. If not, these features should be ignored; in the case of e.g. a decision tree, they 
will present low information gain and not be used as a major indicator of final classification. It’s 
up to the ML algorithms to decide what to ignore. 
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Secondly, the keyword information of keywords used in the query and occurring in the 
document can be put to use. This would involve finding which words occur both in query and 
document, and then retrieving the pre-calculated vectors for document:keyword features. 

As each training example has have the same number of fields, the set of vectors needs to be 
reduced to just one. This is trivial in the case of having just one matching keyword – simply 
add them verbatim to the example – but where there are two or more, they need to be 
combined. A statistical mean would be the most straightforward approach. One with more 
balance would be to weight the vectors by the tf.idf value for the keyword they represent; this 
would result in words that occur a lot over the corpus having a reduced weight, and rarer ones 
influencing the final training example more. 

The final piece of data to add to each training example is the classification. As most of the 
corpora provide only links to relevant documents, when mixed with irrelevant ones, the 
classification problem is a Boolean one. However it is impossible to train a system to 
distinguish between two classes if only one class is provided in training examples. Thus, a set 
of negative examples is required. To provide a fair amount of data, the same number of 
negative and positive examples are used in most cases. 

 

 
4.4 Document and query based features 
Each document text in the index will have a certain number of inherently present measurable 
attributes. For example, we can measure the average word length, the average case (see 
2.1.8), the average sentence length, the number of paragraphs, the total document size, and 
so forth. These can be recorded and stored in an index, and presented in examples to see if 
they are of any use. 

Values can also be derived on a document given a single word. The frequency of the word in 
the document, the position of the first occurrence of the word, the proportion of words in the 
document that match, and the average case of the word in the document are all readily 
available. Queries containing multiple words can also have a useful vector proximity value 
associated with each document (see 2.1.1). Each of these metrics is also known as a feature. 

 

 
4.5 Use of non-text metrics 
The corpora available may also include metadata about each document – that is, information 
associated with the document other than the document content. For example, a product 
database will contain pricing and availability values, as well as perhaps size and weight 
information. As long as these can be translated into a format readable by the learning 
algorithms, they can be included. However, the primary focus is on classifying documents 
based on their words. A proposal for inferring relationships between queries and non-text 
document metrics is outlined in 6.2.5. 

 

 

4.6 Base accuracy 
Base accuracy, for the content of this document, is defined as the accuracy of an algorithm if it 
outputs the most common classification available for every example provided to it. That is, if 
training data consists of nine examples of class A and one of class B, the algorithm will always 
return “A” and thus have a base accuracy of 90% over the training data. 
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4.7 Experiments run 
 

Objectives 

There are a number of goals: 

1. Generate training data 

2. Calculate basic performance of a system 

3. Observe the query formulation process 

4. Measure how accurate retrieved results are 

5. Train a machine learning system to accurately classify documents 

While a manual study (see 6.2.2) would be a good way of collecting this data, it is time 
consuming and difficult to coordinate, and may not be comparable with other related work in 
the field. Thus, reference collections have been used to fulfil 1 and 5, and also to help 
measure 4. Finding out how good humans are at building queries – goal 3 – is not heavily on 
the topic of machine learning and information retrieval, and while interesting, will not be 
covered. Goal 2 is effectively similar to goal 5 if a machine learning system is to power results 
and performance is measured automatically; if subjective human feedback were available, this 
could be used instead. 

 

ML Testing metholodogy 

Each evaluation of an algorithm’s performance is repeated three times, using a 66% train/test 
split. That is to say, approximately two thirds of the data available is used to train the 
algorithm. The remaining part is used to test the trained algorithm, by supplying the feature set 
from each example and seeing if the class was correctly estimated. Every iteration of an 
evaluation uses a different mix of examples in the training and test sets. This ensures that any 
rogue examples or combinations of training / test data are less likely to have impact on the 
final result. 

The value we are interested in is the accuracy of the trained algorithm when classifying items 
in the test set. A high accuracy indicates a better learning of the problem. It is important to note 
that an accuracy of 100% indicates an ability to completely learn the set of examples provided, 
but does not show that the system is perfect. In the case where a collection is only of a limited 
size, if an accuracy of 100% is consistently achieved, it may be possible to show that the query 
relevance assessment method for that collection, but it is not right to say that other unseen 
documents will also be classified accurately (although if the training/test sample size is big 
enough and the relevance decision methodology remains the same, there may be a strong 
chance of correct classification). 

It is possible to adapt so well to a set of training and validation data that unseen examples 
become wrongly classified. This is known as “overfitting” (see 2.4.6).  

We can also measure some IR metrics of the trained system, namely precision and recall (see 
2.2.1). These can be measured from the trained algorithms as follows: 

 

sassessmentexternaltoaccordingarticlesrelevantofnumber
relevantasclassifiedcorrectlyexamplesofnumberrecall =  

Formula 4.1 – Recall of trained algorithm when working with reference collection 

 

relevantasclassifiedexamplesofnumbertotal
relevantasclassifiedcorrectlyexamplesofnumberprecision =  

Formula 4.2 – Precision of trained algorithm when working with reference collection 
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4.7.1 Basic comparison 

The machine learning algorithms selected can be directly compared using WEKA’s default 
parameters, by presenting them all with the same classification problem and training data, and 
measuring accuracy. This can be performed for all 6 test collections. The results expected 
should show which of the collections’ relevancy measures are easiest to learn, and which 
algorithms provide best overall performance. 

 

4.7.2 Boolean reduction 

The first task is to reduce all reference collections to a Boolean classification. Only the 
Cranfield collection isn’t already in this state. Instead, it has 5 classes of relevance. Some 
adjustment of the boundary of what is considered relevant and what not can be performed, to 
see which is easy to learn. The different classifications are described in Appendix B. 

 

4.7.3 Adding metadata 

Excess data such as “Authors” are ignored by our basic system, yet this data is provided by 
both the corpora and queries. This could provide an explanation for some of the cases where 
documents match queries seemingly containing no common words. 

For example, a document from the CACM corpus: 

.I 3078 

.T 
Analysis of the Availability of Computer 
Systems Using Computer- Aided Algebra 
.W 
Analytical results, related to the availability 
of a computer system constructed of unreliable  
processors, are presented in this paper.  These results 
are obtained by using various computer-aided  
algebraic manipulation techniques.  A major purpose of 
this paper is to demonstrate that the difficulties  
of obtaining analytical solutions to Markov processes 
can be considerably reduced by the application  
of symbol manipulation programs.  Since many physical 
systems can be modeled by Markov and semi-Markov  
processes, the potential range of application of these techniques 
is much wider than the problem of availability  
analyzed here. 
.B 
CACM July, 1978 
.A 
Chattergy, R. 
Pooch, U.W. 

 

Should intuitively match a query searching for papers by Pooch, W.: 

.W 
All papers by this author 
.A 
Pooch, W. 

 

But the test system created will not, as A (author) data is ignored (only the W field is used to 
populate the document body), and the non-stopwords in the query don’t occur anywhere in the 
document. This issue also occurs with document titles. Again looking at the CACM corpus, 
many documents contain no ‘body’ text: 

.I 115 

.T 
Optimizers: Their Structure 
.B 
CACM December, 1960 
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.A 
Wheeling, R. F. 
.N 
CA601201 JB March 20, 1978  6:46 PM 
.X 
115 5 115 
115 5 115 
115 5 115 

 

While in the relevance assessments for the collection this document matches queries such as 
“Optimization of intermediate and machine code”, the system implemented will again be 
unable to find a match. It may therefore be worth trying to index additional fields of the 
documents to see if the problem of learning relevance assessments becomes any easier. This 
will be tried primarily with the CACM corpus as it has a significant number of document entries 
that, using the default indexing system, will have an empty body. 

 

4.7.4 Exclude empty documents 

Empty documents may also be impeding the learning problem. It could be interesting to see 
how excluding them from the test corpus, and excluding queries that reference them, affects 
performance. 

 

4.7.5 Vary hidden units 

The type of neural net used in the experiment can have a number of “hidden” units. Each takes 
a number of weighted inputs and outputs a value based on these inputs. Typically, there is a 
layer of input units, one for each value in the input, followed by one or more hidden layers, 
consisting of an arbitrary number of units; these then all provide values to a final output unit 
that delivers classification. 

The number of hidden units available may affect the accuracy of the final classification. A net 
with many hidden units also takes longer to train and test, thus affecting performance (which is 
of secondary concern). It could be good to see if a point exists where adding additional units 
does not increase final accuracy. Coupling this with the use of a validation set should provide a 
clear cut-off point, as no excess training will be performed, reducing the chance of any 
overfitting. 

 

4.7.6 Vary learning rate and training time 

Altering learning rate should affect how well a neural net can classify a test set after a fixed 
amount of training time. This can be coupled with a validation set to reduce overfitting, which 
may be more of a problem if a low learning rate is used, as this would allow closer adaptation 
to nuances of the training data. 

 

4.7.7 Compare training set size with learning ease 

Some corpora may be easier to learn than others, and some algorithms may cope better with a 
restricted set. It could be interesting to look at the final accuracy of algorithms across various 
collections, bearing the size of the training data, the number of documents in the collection, 
and the number of queries available in mind. 
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5. Implementation and testing 
 

5.1 Presenting the problem 
The problem of describing relevant and non-relevant documents needs to be represented in a 
machine readable form, one that can be recognised by machine learning algorithms. The 
target representation is therefore a vector of real-valued or nominal attributes. 

WEKA – a tool used to test machine learning algorithms and data sets – uses the arff format 
for loading in data. This format is described in Appendix C and takes a header, specifying the 
order and type for the fields of supplied data, and then a data section, containing the training 
information itself. 

 

 
5.2 Reference corpus processing 
As the reference collections provide not only a document set but also a set of predefined 
queries and the documents they relate to, we have a set of data that describes a “relevant” 
document. In its raw format, this consists of a document, a query (often natural language), and 
some coupling data describing the relationship. 

To process a text collection / corpus, the document file is read into a database table. Then, a 
reverse index is built, by iterating through each document and performing the following steps: 

• Remove special characters such as punctuation and unrecognised character codes 

• Fold excess spaces into one 

• Build a list of all words in the document 

• Remove any duplicate entries – word counts and positions are of no concern for this 
process 

• For each word: 

• Add the word to a word list if not there already 

• Add the current document into the collection’s reverse index, under this word 

This results in a list of non-stopwords being created, as well as a simple reverse index. 

The next operation performed with the document texts is to calculate document features, as 
described in 4.4. These are calculated for each document and stored in another database 
table. 

After the documents have been read and indexed, a set of features can be derived for each 
word, as also described in 4.4. This is often the most time consuming part of preparing a 
corpus, as it involves a noticeable number of string manipulation, array processing and 
mathematical operations on every unique non-stopword in every document in the corpus. The 
Time collection has over 92,000 of these relations. 

 

 
5.3 Negative examples 
Two methods exist for generating negative examples. 

Negative examples are generated by selecting a random document and two random relations 
and generating a vector for them. This is equivalent to white noise – there is a chance that a 
useful relationship exists there, but it is unlikely. This method, whilst risking introducing 
conflicting data in some places, may be harder to learn. 

An alternative method for generating negative examples is to find a query, and locate at 
random a document that is not in the set deemed relative. Then, the words common to the 
document and the query (if any) are looked up, and their features added to the training 



 Machine learning techniques for document selection 33 

 

  

33 

example, as per the positive ones. This may provide a much easier problem to learn, as the 
training example generated may more often than not contain a lot of zeros for frequency 
figures. 

The former method is used. It is less computationally intense to execute, and distinguishing 
relevant documents from noise is a better comparison to real world situations than 
distinguishing data which likely has mainly zero values as its feature vector. 

 

 
5.4 No–relationship flag 
Not all document/query pairs could be used as training data. Occasionally, no common words 
will be found between the query and document. When this happens, there will be no data to 
generate features from; so, the relationship is skipped over. This error indicates that the 
system cannot find a relationship between query and document, though external assessors 
have seen one and placed it into the collection. A weakness or lack of complexity in the 
system may be the cause. Possible remedies could increase the chance of terms in 
documents being matches to those in queries; for example, allowing synonymous terms to 
match, or counting words with common stems as equivalent. 

  

 

5.5 Notes 
The CACM query file also ends in a spurious .I 0; this led to an error about there being a lack 
of data for a query, and a message reporting the last ID loaded to be 0, possibly indicating a 
problem (this was of course a false negative). 
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6. Results 
 

6.1 Findings 
Full results from all experiments can be found in Appendix A. Every test is executed with 
randomly shuffled representations of the problems, different random seeds, and different data 
on each side of the test/training split. All results are calculated three times, but in this section 
only the mean is shown. Unless otherwise stated, equal numbers of positive and negative 
training examples are included. Neural nets are built using a fixed training time of 200 
iterations (unless otherwise stated). 

 

6.1.1 Basic comparison 

Once all collections had been loaded, the default ARFF file was generated for each one. This 
contained feature representations of the query/document pairs present in the collection. An 
experiment was then set up in WEKA with the following machine learning algorithms and every 
corpus. 

Corpus Examples Positives Negatives 
Base 
Accuracy 

ADI 248 124 124 50.00%
CACM 1044 522 522 50.00%
CISI 5090 2545 2545 50.00%
CRAN 1136 568 568 50.00%
MED 1146 573 573 50.00%
TIME 232 116 116 50.00%

 

Table 6.1 – Initial corpus ARFF setup 

Results and configurations are shown below. The improvement is the gain over base accuracy 
yielded. 

 

Naïve Bayes classifier: 

Parameters: NaiveBayes 

 

Corpus Mean accuracy Improvement
ADI 81.97% 63.94%
CACM 83.57% 67.14%
CISI 78.72% 57.43%
CRAN 72.51% 45.01%
MED 75.62% 51.25%
TIME 59.98% 19.95%

 

Table 6.2 – Naïve Bayes initial results 

 

C4.5 Decision Tree: 

Parameters: J48 –C 0.25 –M 2 

Explanation: confidence factor 0.25, minimum 2 instances per leaf 
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Corpus Mean accuracy Improvement
ADI 81.18% 62.35%
CACM 86.76% 73.52%
CISI 88.98% 77.97%
CRAN 82.19% 64.39%
MED 81.01% 62.01%
TIME 70.20% 40.41%

 

Table 6.3 – C4.5 initial results 

 

 

K-Nearest Neighbour: 

Parameters: KStar –B 20 –E –M a  

Explanation: use entropy-based blending, average out missing values – though there are 
none here, global blend of 20 

 

Corpus Mean accuracy Improvement
ADI 70.59% 41.18%
CACM 72.30% 44.60%
CISI 69.51% 39.02%
CRAN 58.79% 17.58%
MED 68.95% 37.90%
TIME 63.39% 26.79%

 

Table 6.4 – K* initial results 

 

Neural net: 

Parameters: MultilayerPerceptron –L 0.3 –M 0.2 –N 200 –V 0 –H a  

Explanation: learning rate 0.3, momentum 0.2, train for 200 iterations, no validation set, use 
one layer of hidden units, with a size equal to the number of attributes plus the 
number of classifications 

 

Corpus Mean accuracy Improvement
ADI 82.60% 65.20%
CACM 90.81% 81.63%
CISI 91.31% 82.63%
CRAN 84.65% 69.30%
MED 93.76% 87.51%
TIME 61.29% 22.58%

 

Table 6.5 – Neural net initial results 

 

Overall average results showed the CACM collection to have the easiest relevance 
assessments to learn, and the Time one hardest: 



 Machine learning techniques for document selection 36 

 

  

36 

 

Corpus 
Base 
accuracy 

Average 
improvement

 

ADI 50.00% 58.17%  
CACM 50.00% 66.72% max 
CISI 50.00% 64.26%  
CRAN 50.00% 49.07%  
MED 50.00% 59.67%  
TIME 50.00% 27.43% min 

 

Table 6.6 – Average accuracy of trained algorithms, by corpus 

 

Also, the neural net turned out to be best at learning the problem on average. Decision trees 
were almost as effective, and a lot less processor intensive to train. This meant that 
experiments using decision trees could be carried out a lot more quickly.  

Algorithm Base accuracy
Average trained 

accuracy Average improvement
Naïve Bayes 50.00% 75.39% 50.79% 
C4.5 decision tree 50.00% 81.72% 63.44% 
K* lazy 50.00% 67.26% 34.51% 
N 50.00% 84.07% 68.14% 

 

Table 6.7 – Average accuracy of trained algorithms, by algorithm 

 

One notable exception was that the Time data – although hard to learn with all algorithms – did 
particularly badly with neural nets, offering only a 22% improvement. Also, the Cranfield II data 
was unusually tough for K*, yielding only a 17% improvement, almost one and a half standard 
deviations (s.d. = 10.24) below the mean for this algorithm. 

 

6.1.2 Boolean reduction 

Cranfield needs to be reduced to a Boolean classification from its initial 5-state document 
classification. The meanings of the states can be found in Appendix B, with 1 being 
“completely relevant” and 5 being “not relevant at all”. The algorithm used to examine this was 
WEKA’s J48 implementation of the C4.5 decision tree algorithm; the time taken to create trees 
was very low compared to that of neural nets and K*, and it exhibited a more consistent 
improvement with the Cranfield corpus. 

The first stage was to generate 4 sets of training data, with classifications ranging from 
(1,2,3,4) as positive and (5) as negative to just (1) as positive. There are no examples of 5 in 
the collection, as they are implied for every relationship not given a value of 1-4. Thus, 100 
random negative examples were also added to each training set. 

 

Class Set 1 Set 2 Set 3 Set 4 

1 Positive Positive Positive Positive 

2 Positive Positive Positive Negative 

3 Positive Positive Negative Negative 

4 Positive Negative Negative Negative 

5 Negative Negative Negative Negative 

 

Table 6.8 – Cranfield negative/positive split training sets 
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As there is a fixed number of training examples available with every collection, the distribution 
of positive and negative examples varied depending on where the negative/positive split was 
placed. Initial results found there to be little difference from base accuracy: 

 

Set Positives Negatives Total 
Base 
accuracy

C4.5 
accuracy Improvement 

1 54 627 681 92.07% 92.08% 0.00% 
2 198 483 681 70.93% 70.89% -0.03% 
3 444 237 681 65.20% 68.54% 3.34% 
4 581 100 681 85.32% 91.08% 5.77% 

 

Table 6.9 – Cranfield Boolean reduction initial results 

 

It is easiest to see improvements when base accuracy is 50%, and may not be “fair” to provide 
unequal numbers of positive and negative examples. Thus, we can revise this experiment so 
that each training set has an equal number of positive and negative examples; this can be 
done by suppressing or inserting negative examples. 

 

Set Positives Negatives Total 
Base 
accuracy

C4.5 
accuracy Improvment 

Artificial 
negatives

1 54 54 108 50.00% 55.03% 5.03% 0
2 198 198 396 50.00% 50.37% 0.37% 0
3 444 444 888 50.00% 72.71% 22.71% 307
4 581 581 1162 50.00% 87.79% 37.79% 481

 

Table 6.10 – Cranfield Boolean reduction with equal negative and positive examples 
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Figure 6.1 - Cranfield Boolean reduction with equal negative and positive examples 

 

A significant impact can be seen straight away, with the maximum difference reaching over 
37%, compared to initial best results of under 6%. Providing equal numbers of positive and 
negative examples seems to have made the problem easier to learn overall, and there is a 
suggestion that less stringent requirements for positive classification may be better training 
examples. 

However there is still not much improvement over base accuracy with sets 1 and 2. Set 1 has 
negative examples made entirely up of documents classified as being relevant to some degree 
(classifications 2, 3 and 4). These are ranked, and a document declared as having class 2 
relevance to a query may have a very similar representation to one having class 1 relevance. 
That is, distinguishing class 1 from classes 2, 3 and 4 may be harder than distinguishing class 
1 from a negative example (or class 5, in the case of Cranfield). Thus, the number of artificial 
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negatives can be counted for each of the above sets, and compared; there seems to be a 
relationship here with improvement. 
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Figure 6.2 – Cranfield Negative examples vs. accuracy 

 

To test whether artificial negatives (e.g. class 5) are easier to learn than classes 2, 3, or 4 as 
negatives, the test was repeated, with equal numbers of negative and positive examples, and 
all negative examples being artificially generated. If this problem is easier, it may be an 
illustration of the ranking problem described in 3.5, where it is hard to declare the ordered 
relationship between ranked classes instead of their independence.  

 

Set Positives Negatives Total 
Base 
accuracy

C4.5 
accuracy Improvement 

1 54 54 108 50.00% 84.43% 34.43% 
2 198 198 396 50.00% 85.85% 35.85% 
3 444 444 888 50.00% 87.40% 37.40% 
4 581 581 1162 50.00% 90.23% 40.23% 

 

Table 6.11 – Cranfield, equal positive and negative examples with only artificial negatives 
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Figure 6.3 - Cranfield, equal positive and negative examples with only artificial negatives 

 

This problem was definitely easier to learn, with a marked improvement over base accuracy 
being seen in all sets. Accuracy gain went up as the threshold for negative examples moved 
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further away from 1. This may however have been due to the size of the training set increasing 
– Set 4 in this case is over ten times the size of Set 1. We can check this to some extent by 
limiting the amount of training data available. 

Set Positives Negatives Total 
Base 
accuracy

C4.5 
accuracy Improvement 

1 54 54 108 50.00% 85.31% 35.31% 
2 54 54 108 50.00% 79.73% 29.73% 
3 54 54 108 50.00% 80.73% 30.73% 
4 54 54 108 50.00% 79.75% 29.75% 

 

Table 6.12 – Cranfield with limited training data 
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Figure 6.4 – Cranfield with limited training data 

Here, it seems that classifications of 1 vs. artificial negatives are easier to learn than anything 
else, though only slightly. This may be due to the strength of the highest relevance 
classification compared to the others. The experiment can be repeated, but limiting training 
data to the amount available for Set 2 (where possible) to verify this result – it seems weak as 
the amount of data is so low. 

 

Set Positives Negatives Total 
Base 
accuracy

C4.5 
mean Improvement 

1 54 54 108 50.00% 88.11% 38.11% 
2 198 198 396 50.00% 84.87% 34.87% 
3 198 198 396 50.00% 87.10% 37.10% 
4 198 198 396 50.00% 81.15% 31.15% 

 

Table 6.13 - Cranfield with less limited training data 
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Figure 6.5 – Cranfield with less limited training data 
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This reiterates the ease of classifying Set 1 previously found, especially considering it now has 
half the amount of training data available in other sets. Overall the result is not very strong, 
due to a lack of training data (a 66% split is used so only 36 examples are actually used to 
train in Set 1), and the standard deviation in results back up the weakness of the result – for 
Set 1 in the two last experiments, s.d. = 4.29 and s.d. = 4.00 respectively, which comes close 
to or encompasses results for the other sets. Thus, Set 1 may well be easiest to learn when 
compared to artificial data, but there’s not sufficient evidence to strongly declare this. 

 
6.1.3 Adding metadata 

Documents exist with multiple optional fields aside from their main body. Queries can be 
created to match these optional fields, and don’t even have to contain any text at all. As the 
simplified test system we will build will only cater for body texts, this could lead to queries 
being associated with empty documents, which may be hard to learn. It may be possible to 
measure any effect this has on the setup by allowing the system to also match extra metadata. 

Titles are the most prevalent form of metadata present in documents. The CACM corpus in 
particular includes many documents that have no body (around half – see 3.3.1), Titles could 
be added to the system, perhaps prepended to the body text (with a separating space). 
Prepending titles would give different scores for keywords in the title on position-related 
metrics, as well as affecting overall keyword densities. 

This would then allow the indexer to create entries for words in the title, which in turn could be 
matched against queries. Hopefully, more consistent training examples will be created from 
document/query matches involving some common text. Only the Naïve Bayes and C4.5 
classifiers are used here, as they managed to perform reasonably without significant problems 
in the basic comparison, and are much quicker to run tests with in comparison to K* and neural 
net algorithms. 

 

Corpus Accuracy Without title Difference 
ADI 68.29% 81.97% -13.68%
CACM 72.22% 83.57% -11.35%
CISI 70.27% 78.72% -8.45%
CRAN 68.85% 72.51% -3.65%
MED 75.69% 75.62% 0.07%
TIME 59.98% 59.98% 0.00%

 

Table 6.14 – Performance of Naïve Bayes classifier using body text with titles added 

 

Corpus Mean Without title Difference 
ADI 77.82% 81.18% -3.35%
CACM 80.27% 86.76% -6.49%
CISI 80.81% 88.98% -8.17%
CRAN 83.01% 82.19% 0.82%
MED 81.95% 81.01% 0.95%
TIME 70.20% 70.20% 0.00%

 

Table 6.15 – Performance of C4.5 decision tree classifier using body text with titles added 

 

No real performance increase can be seen here; if anything, there is a drop. Some, such as 
the Time corpus, have no title tags, and so performance remains static, as expected. The 
proportion of documents that have titles can be examined: 
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Corpus Naïve Bayes C4.5 Document count Documents with titles Proportion
adi -13.68% -3.35% 82 82 100.00%
cacm -11.35% -6.49% 1587 1586 99.94%
cisi -8.45% -8.17% 1460 1460 100.00%
cran -3.65% 0.82% 1400 1398 99.86%
med 0.07% 0.95% 1033 0 0.00%
time 0.00% 0.00% 423 0 0.00%

 

Table 6.16 – Proportions of documents with titles 
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Figure 6.6 – Accuracy at processing documents with additional titles vs. title usage 

 

It may be worth experimenting with other machine learning algorithms in this setup. It could 
also be worthwhile assigning extra weight to the title text somehow. This could be crudely 
achieved by adding it in uppercase, under the current system (though this would have no 
impact on the entirely uppercase Time corpus, there are no titles there anyway). If a full HTML 
parsing system was written, the <title> tag content would be equivalent to the abstract titles 
given in reference corpora. There is a slight variance in MED’s performance despite it having 
no titles, possibly due to differing sample selections. 

 
6.1.4 Exclude empty documents 

There are some documents that contain no body text. Notably the CACM corpus suffers from 
this notably, with around half of all document bodies empty. It may be easier to learn target 
classifications with links to empty documents removed. Any documents without bodies were 
not be indexed, and removed from query relevance lists. The CACM corpus was then re-
indexed and its queries reloaded to form a new ARFF file. This was then run through each 
algorithm with default parameters. 
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Algorithm Accuracy Unadjusted accuracy Difference
Naïve Bayes 68.70% 83.57% -14.87%
K* 66.07% 72.30% -6.23%
Neural net 90.63% 90.81% -0.19%
C4.5 tree 72.54% 86.76% -14.22%

 

Table 6.17 – Performance with titles prepended to body text 

A global drop in performance can be seen. This is significant with decision tree and Bayes 
classifier learners, which both drop their accuracy by over 14%. Thus, reducing the problem to 
exclude documents which intuitively do not contribute does not appear to be a good way of 
making the problem easier. 

 

6.1.5 Vary hidden units 

The number of hidden units in a neural net can affect its final performance. Having a high 
number of hidden units will also lead to very long real times for training and testing the net. It 
may be interesting to see where adding additional units has no further effect, by creating an 
experiment that uses neural nets with varying numbers of hidden units. The CACM and MED 
collections are learned well so far by neural nets, and are not enormous (and therefore time 
consuming to learn) when compared to others, e.g. CISI. The practice is to run these with a 
single hidden layer of between 1 and 20 units, for 200 iterations, with no validation set. 

 

Hidden layers CACM accuracy % MED accuracy %
1 66.73 76.22 

2 73.94 78.02 

3 73.10 91.79 

4 90.63 89.22 

5 87.82 87.85 

6 84.62 91.36 

7 87.72 90.93 

8 89.31 90.59 

9 87.44 90.93 

10 85.94 91.36 

11 90.07 90.85 

12 85.29 89.73 

13 85.19 90.59 

14 87.16 91.61 

15 89.60 90.93 

16 87.44 90.67 

17 86.03 90.67 

18 86.79 91.27 

19 85.19 90.76 

20 88.19 91.27 
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Table 6.18 – Accuracy of a neural net while varying hidden layer size 
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Figure 6.7 - Accuracy of a neural net while varying hidden layer size, with the CACM collection 
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Figure 6.8 - Accuracy of a neural net while varying hidden layer size, with the MED collection 

 

The accuracy with MED seems to peak after 3 units are added, and with CACM at 4 units, and 
doesn’t get significantly higher. There are even some drops, perhaps as the algorithm overfits 
to the training data. Use of a validation set ought to remedy this. Running the experiment with 
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more than 3 iterations at each number of units may yield a smoother curve. MED’s accuracy 
seems to be converging on a value around 91%. 

 

6.1.6 Vary learning rate and training time 

The learning rate affects the amount of change that can occur in a perceptron’s weights per 
iteration. The training time determines how many iterations of backpropagation are run on the 
net before it is tested, in order to limit the amount of time taken to train. A lower training time 
should result in a less accurate net; a lower learning rate should require more training time to 
attain peak accuracy. We will use a validation set of 80 instances here to be able to better 
identify peak accuracy; training will stop when performance does not rise any more after 20 
consecutive iterations. Hidden units were configured in a single layer of 10. Initially learning 
rate was set to 0.2. The MED corpus was the only one used here, as it has worked well with 
neural nets so far, and experimenting with every corpus would be extremely time consuming, 
with experiments taking days to run each time. 

 

Traintime Accuracy 
5 61.68523 

10 70.49217 
20 72.03085 
50 74.3381 

100 77.41502 
200 79.80819 
300 79.2099 
400 79.2099 
500 79.2099 
700 79.2099 

1000 79.2099 
 

Table 6.19 – Accuracy with increasing training time, using a learning rate of 0.2. 

 

Maximum consistent accuracy seems to have been reached by an epoch of 300; the validation 
set has kicked in here as the accuracy remains exactly the same for higher values. This is 
useful as we can now have evidence for restricting experiments to a low training time, thus 
saving real time. 

 

traintime accuracy 
5 50.04285 

10 54.66394 
20 72.71417 
50 72.88489 

100 73.05561 
200 74.42313 
300 75.70518 
400 75.70518 
500 75.70518 
700 75.70518 

1000 75.70518 
 

Table 6.20 – Accuracy with increasing training time, using a learning rate of 0.1 
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A decreased learning rate seems to impair the final accuracy, or at least, cause the current 
configuration of training set to stop training when accuracy is lower than that when the learning 
rate is 0.2. The point where the validation set kicks in is still 300 (or below) for this corpus. It 
may be worth extending the threshold for validation cut-off to more than 20 iterations, to se if a 
higher final accuracy can be reached. 

 

 

6.1.7 Compare training set size with learning ease 

The amount of training data available may affect the accuracy of the final system. We shall 
compare the accuracy improvement of all algorithms with the number of training examples 
available. 

Corpus Examples Naïve Bayes C4.5 K* Neural net 
TIME 232 19.95% 40.41% 26.79% 22.58% 
ADI 248 63.94% 62.35% 41.18% 65.20% 
CACM 1044 67.14% 73.52% 44.60% 81.63% 
CRAN 1136 45.01% 64.39% 17.58% 69.30% 
MED 1146 51.25% 62.01% 37.90% 87.51% 
CISI 5090 57.43% 77.97% 39.02% 82.63% 

 

Table 6.21 – Corpus size vs. improvement offered in a trained system 
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Figure 6.9 – Corpus size vs. improvement offered in a trained system 

 

There does not appear to be any strong relationship between the size of the training set and 
accuracy of the final system. While the minimum improvement with the largest sample is 
greater than that of other sized samples, the smallest improvement does not occur with the 
smallest corpora, and the greatest improvement does not occur with the largest ones. 
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Unfortunately, the sizes of datasets available seem to occur in three clusters; 230-250, 1000-
1200, and CISI at 5090. To see a strong relationship here, results would have to be tightly 
grouped in each cluster, meaning all algorithms would have to perform equally. If we look at 
any one algorithm, there is not enough data to see a strong relationship. This study could be 
performed with a better populated range of training set sizes, and perhaps examine each 
algorithm individually. 

 

 
6.2 Further work 
 
6.2.1 Stemming 

Applying a stemming algorithm to all queries and document bodies prior to indexing and ARFF 
file generation may result in a higher match rate, and reduced no-relationship messages (see 
5.4). 

 

6.2.2 Practical study 

A substantial quantity of data is needed to thoroughly and effectively train and evaluate 
machine learning algorithms. Explicit data is expensive to gather, as mentioned above, as it 
involves user feedback. However implicit feedback is reasonably trivial to collect and can be 
used in place – or alongside – explicit human-originated data. 

An issue with implicit data is that it is not 100% accurate; it suggests the opinion of the user 
but does not explicitly declare it. Thus, we need to know how accurate the implicit data is. 
Further, we need to be aware of any bias in the implicit feedback gathering mechanisms, and 
to be able to identify issues and test the setup. Also, some explicit – and therefore completely 
(or near-completely) accurate – data could be of great use when testing ML algorithms. 

A study would involve testing some assumptions, measuring the performance of gathering 
implicit feedback, and should provide some authoritative data. It should also provide a good 
baseline for comparing against data gathered by other means. 

 

6.2.3 Experiment ideas 

(i) A basic task would be to ask participants to find a piece of data. They would search for it 
using an IR system logging the metrics described in [2], and would then be asked to classify 
each presented title and abstract into one of a limited number of classes. A potential set of 
classes for documents could be: 

• Strongly relevant – similar to the top 2 documents, as they have special treatment 

• Probably relevant – looks like it would contain helpful information 

• Potentially useful – may be useful to the task, though the participant is unsure 

• Irrelevant – definitely not useful to the task 

The last class, “irrelevant”, indicates a document that should not have been recalled at all, and 
thus its presence in the result set shows a precision deficiency in the IR system. 

 

(ii) An experiment that evaluates and provides feedback on how relevant a document is (as 
opposed to its abstract, as presented in results) could be useful. This would involve 
presentation of a results page, along with a keyword, and a classification task, whereby each 
abstract is judged for relevance; all documents should then (in any order desired) by opened 
and examined by the participant, perhaps in pop-up windows, and evaluated for their “real” 
relevance. 

It may be possible – and tempting – for participants to approximate a judgement on the “real” 
document, or to misinterpret the task and not perform this second part correctly. To encourage 
following the correct message, the ability to enter feedback on the full document could only be 
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enabled after the document has been displayed and a small delay. Participants may also want 
to change their initial assessment of a document based on its abstract after examining it as a 
whole; this need to be prevented as the discrepancy is part of what the experiment measures. 
To this end, the element used to enter a classification for the abstract’s relevance would be 
locked after the full document is opened. 

(iii) A task where participants order results would also be good, and enable the use of some IR 
metrics. Participants would again be given an information-seeking task, and would then be 
presented with an initial ordering of candidate document abstracts. They would then enter their 
ideal ranking of these documents in descending order of relevance to the task. This would 
provide an IR system performance metric, to aid in evaluation, e.g. tau measure. 

(iv) Participants could be given a task using an IR system, again given an information-seeking 
goal, where they enter a keyword, examine results, and then through interaction with the 
results page, navigate to the document they believe is best. This would be means of gathering 
comparative tracking data via common single click search behaviour. A “standard” set up, so 
the IR system will be web based, and the experiment conducted using common browsing 
software, screen resolutions and so forth. Participants are free to use the web in any manner 
they see fit, and they should just treat it as a normal browsing session, as it’s important to 
capture data that is as natural as possible. We would be especially keen to capture events 
such as the use of the back button between results pages and documents, and query 
reformulation. To this end it may help for them to be unaware of the nature of the study, of 
what is logged, and even of being watched at all – some pretext for the experiment might help. 
Explicit feedback should be collected here, to validate the implicit data logged. This should 
help assess how accurate the training data mined later will be. 

All these experiments only gather training data above a baseline untrained system; that is, 
they represent data on IR systems that have no prior knowledge of user preference or their 
own performance. Once a system is taught to provide results well, the trends in data gained 
from user behaviour on such a system may be different, as users are hopefully given more 
relevant results. Also, as the IR system provides better results, it should become easier to see 
any artefacts in the data that are independent of performance and perhaps more user related. 
For example, if a particular phrase is hard for users to read or accurately evaluate, this could 
hypothetically be interpreted as a performance deficiency for that phrase. As over performance 
improved, it may be discernable that there is in fact less of a problem with this phrase. Such 
deductions are however outside the scope of this project as the main concern is with the 
performance of learning algorithms compared with unintuitive IR, and not with identification of 
particular user behaviours in the gathered data. 

 

6.2.4 Study practises 

To ensure that the study isn’t skewed badly by anomalous results, averages of at least 3 
should be taken of any numeric measures derived from data collected. Noise and anomalies in 
the raw log data captured should not be considered a problem but rather a beneficial of what 
real-world data might look like and a test as to the resilience of the algorithms tested. 

Participants are likely to get fatigued as the study progresses, and their behaviour could be 
susceptible to change. People are also likely to find it hard to concentrate on a repetitive task 
for a long period of time, which suggests that contiguous tasks should occur in shorter blocks. 
On the other hand, it will take some mental exertion to switch between tasks, so it’s important 
to not make such blocks too short. 

To help ensure an even level of concentration over the study as a whole, the experiments will 
be conducted one at a time, in random order. Inside each experiment, the series of individual 
tasks will be randomly ordered. This should help negate any bias caused by fatigue or 
particular questions / question orderings, as participants will approach experiments and tasks 
with evenly distributed levels of fatigue and bias from previous questions. 

A good balance of classification possibilities in the training data gained from the study will help 
set the learning algorithms up to better classify documents. If only “relevant” and “very 
relevant” documents are returned, then examples of these two classes will be amassed, and 
the others will remain neglected. This results in leaving the system with impaired ability to 
classify items into other categories, and may lead to a lot of false classification into “relevant” 
and “very relevant”. 
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To work around this, result sets used for classification oriented experiments within the study 
can be mixed with random and irrelevant abstracts. The results of the baseline IR system 
given a user query can be restricted to one part of the presented result set; a second part will 
be taken from randomly selected documents in the collection that contain the term used in the 
query (or, in the case of multiple word queries, any one of the words). A final part of the result 
set will then be taken from random documents that do not contain any part of the query, in the 
hope of getting some “irrelevant” examples. 

These “mixed” results will be used in experiments (i), (ii), and (iv). Experiment (iii) does not 
attempt to classify documents but rather measure the performance of an IR system, and so 
should not be tampered with. 

 

Should users provide their own search phrases? 

All the experiments involve at least a query and a set of document abstracts. This set is often 
the result of submitting the query to an IR system as part of a larger task. 

It would be possible to constrain the data by stipulating which search word is to be used. This 
could be done either with an arbitrarily selected word, or perhaps a query derived using an 
entropy related information gain metric (as in C4.5 / ID3, [18]) that attempts to use phrases 
most ‘valuable’ to the training set. 

The initial inclination would be to present a task and let participants choose their own keyword, 
for the following reasons. 

• An IR system should provide references to most useful document, not simply those closest 
matched to the terms provided in the query (the two may differ due to information loss 
during query formulation). The goal is to provide what a user wants, no how to simply 
match phrases. 

• Participants may be frustrated by the inability to amend the search phrase user, especially 
if they consider it inappropriate. 

• Unpredicted data and behaviour may be more likely to reveal unexpected effects and facts 
of the system / learning algorithms, especially when it comes from multiple people and not 
just the designer of the experiment. 

• The experiment should be as close to a natural environment as possible. Noise in training 
data will help more thoroughly test ML algorithms. In the case of time-based metrics, the 
time taken to formulate and/or amend queries must be also included. 

 

 

6.2.5 Handling prior knowledge 

In some systems, intuitive decisions could be made by a human that are not automatically 
included in the ML implementation. An attribute labelled as “price” could have an effect on the 
ranking order if keywords such as “cheap”, “bargain”, or “premium” are found in the submitted 
query (given that the corpus and searcher are working in English). This kind of data could be 
hard coded into the system during implementation, but there are drawbacks to this approach. 
For one, a customised version of the system would be needed for each different corpus, and 
software maintenance will be required when the form of the corpus is altered. Secondly, hard 
coding this data reduces some of the ability of the learning algorithm to adjust results as it 
sees fit – the weighting of the association between attribute value and keyword used is not 
directly influenced by the learning algorithm and so harder to optimise. Also, the set of 
keywords that trigger the association may have to be manually controlled at implementation or, 
at best, by the IR system owners / maintainers. 

Experimentally, to work around the disadvantages to implementing this kind of prior 
knowledge, some kind of mechanism that is capable of learning associations between 
keywords and attribute value ranges / tendencies. This would involve a mapping of keywords 
used in queries and the values of documents positively and negatively identified during the 
click session (see 2.3.2). One way of representing this mapping would be as a weighting on 
each feature found in the positive and negative documents. The average feature value across 
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the entire corpus would be computed. This would then be compared with the positively 
identified document and any differences stored with a keyword. 

To avoid interfering too much with the IR function of the system too much by providing more 
general skewing, such as reinforcing that higher keyword density tends to provide favoured 
documents, the keyword/attribute weights should only be applied to metrics that are otherwise 
outside of the scope of the system. However when we encounter non-text attributes, some 
inference should be taken from these to draw as much value from the data available as 
possible. A field labelled “price” or “citations” would usually play no part in conventional text-
based information retrieval; here we present an experimental approach for handling such 
fields. 

The table below is based on document selection from the results of a query of “cheap shoe”. 

For the term “cheap”: 

 Price Days since last update 

Corpus mean 80.94 24 

Selected document 19.99 22 

Weights 0.947 0.217 

 

Table 6.22 – Keyword/attribute associations for “cheap” 

Note also that a weight may accrued for the intuitively irrelevant attribute “days since last 
update”. To reduce the impact of such incidental weightings, the variance of the weight 
could be recorded, and then only those weights with sufficiently low variance would be 
applied when assessing documents for rankings. This ought to have the effect of 
eliminating any weight data gathered that is irrelevant, as those weights with high variance 
are likely to be of little use when biasing documents. Most ML algorithms should filter out 
less relevant attributes; for example, decision trees often use an entropy gain metric for 
this purpose 
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7. Conclusion 
 
The field of information retrieval is mature and a lot of published work exists. It is relatively 
straightforward to build a simplistic IR system, through reverse indexing, and problems such as 
storage requirements and performance can be overcome with stemming, use of thesauri, and 
more efficient designs. 

Work in information retrieval has provided reference collections which are ready made for the 
task of experimenting with IR. They can be compared to other works in the field and 
circumvent the need for collecting a set of documents. A collection also provides queries and 
relevance judgements, which again save time and effort. 

These relevance judgements can be presented to machine learning algorithms, through 
numeric representations of the relationships between a query and documents. This 
representation set is a model of what kind of document is considered relevant. As our goal is 
to have a system learn to distinguish relevant documents from irrelevant ones, and many 
positive relations are identified in reference collections, all that is needed to complete a set of 
training data is inconsequential negative examples. 

The basic machine learning algorithms tested are able to distinguish relevant documents from 
irrelevant ones using the initial feature representation. This shows that the representation 
carries across some values that change in a distinguishable way when a certain degree of 
relevance between document and query is reached. 

Further, it has been shown that it is possible to increase the accuracy of machine learning 
algorithm when deciding relevancy. Adjusting the representation and the way that documents 
are indexed have an effect on the final quality of the trained system. Also, manipulating the 
parameters of the ML algorithm can affect both the time it takes to learn data and distinguish 
documents, and its ability to do so. 

This approach is promising and much further work can be done in the field, especially around 
the interactions people have with IR systems. Much indirect data is generated and although 
some was captured by the study, not enough was available to provide directly significant 
results. 

Initial results show that machine learning can provide an effective alternative to conventional 
IR systems, though many IR techniques can be used to help effectively represent the problem 
and increase final accuracy. 
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Appendix A – Full Results 
 

Basic comparison 

corpus examples positives negatives 
base 
accuracy avg improvement 

adi 248 124 124 50.00% 58.17%  
cacm 1044 522 522 50.00% 66.72%  
cisi 5090 2545 2545 50.00% 64.26%  

cran 1136 568 568 50.00% 49.07% 
bool thresh = 
max 

med 1146 573 573 50.00% 59.67%  
time 232 116 116 50.00% 27.43%  
       
       
naivebayes:   75.39% 50.79%  
corpus acc1 acc2 acc3 mean acc improvement  
adi 77.67% 75.29% 92.94% 81.97% 63.94%  
cacm 85.92% 81.13% 83.66% 83.57% 67.14%  
cisi 79.20% 78.73% 78.22% 78.72% 57.43%  
cran 71.65% 71.88% 73.99% 72.51% 45.01%  
med 74.87% 72.05% 79.95% 75.62% 51.25%  
time 55.13% 65.82% 58.97% 59.98% 19.95%  
       
c4.5    81.72% 63.44%  
corpus acc1 acc2 acc3 mean acc improvement  
adi 77.65% 83.53% 82.35% 81.18% 62.35%  
cacm 89.30% 83.66% 87.32% 86.76% 73.52%  
cisi 89.08% 88.67% 89.20% 88.98% 77.97%  
cran 81.70% 81.25% 83.63% 82.19% 64.39%  
med 82.82% 82.56% 77.63% 81.01% 62.01%  
time 64.10% 72.15% 74.36% 70.20% 40.41%  
       
k* (entropy blend on)  67.26% 34.51%  
corpus acc1 acc2 acc3 mean acc improvement  
adi 70.59% 75.29% 65.88% 70.59% 41.18%  
cacm 70.99% 71.83% 74.08% 72.30% 44.60%  
cisi 67.82% 70.92% 69.79% 69.51% 39.02%  
cran 60.71% 58.71% 56.95% 58.79% 17.58%  
med 68.46% 68.46% 69.92% 68.95% 37.90%  
time 56.41% 65.82% 67.95% 63.39% 26.79%  
       
mlp learntime = 200  84.07% 68.14%  
corpus acc1 acc2 acc3 mean acc improvement  
adi 80.95% 84.71% 82.14% 82.60% 65.20%  
cacm 93.26% 91.01% 88.17% 90.81% 81.63%  
cisi 92.84% 87.75% 93.36% 91.31% 82.63%  
cran 85.71% 83.26% 84.98% 84.65% 69.30%  
med 91.28% 94.36% 95.63% 93.76% 87.51%  
time 62.82% 58.23% 62.82% 61.29% 22.58%  
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Cranfield negative threshold split 

 

           
 all use j48 -c 0.25 -m 2, as it's quick to run, and picks up well     
           
           
negative 
threshold positives negatives total baseacc 

c4.5 
acc1 

c4.5 
acc2 

c4.5 
acc3 

c4.5 
mean difference  

1 54 627 681 92.07% 92.21% 91.81% 92.21% 92.08% 0.00%  
2 198 483 681 70.93% 71.00% 70.69% 71.00% 70.89% -0.03%  
3 444 237 681 65.20% 66.67% 71.43% 67.53% 68.54% 3.34%  
4 581 100 681 85.32% 90.09% 90.52% 92.64% 91.08% 5.77%  

           
           
 have trimmed or extended result sets to create 50/50 split of pos/neg examples   
           
negative 
threshold positives negatives total baseacc 

c4.5 
acc1 

c4.5 
acc2 

c4.5 
acc3 

c4.5 
mean difference

num artificial 
negs 

1 54 54 108 50.00% 63.89% 56.76% 44.44% 55.03% 5.03% 0
2 198 198 396 50.00% 49.63% 50.00% 51.49% 50.37% 0.37% 0
3 444 444 888 50.00% 71.19% 74.17% 72.76% 72.71% 22.71% 307
4 581 581 1162 50.00% 90.13% 85.61% 87.63% 87.79% 37.79% 481

           
           
 it may be harder to distinguish [1] vs [2,3,4,fail] compared to [1] vs [fail]. So, skip natural negs, and make them all artificial 
           
negative 
threshold positives negatives total baseacc 

c4.5 
acc1 

c4.5 
acc2 

c4.5 
acc3 

c4.5 
mean difference  

1 54 54 108 50.00% 86.11% 81.08% 86.11% 84.43% 34.43%  
2 198 198 396 50.00% 88.89% 88.81% 79.85% 85.85% 35.85%  
3 444 444 888 50.00% 85.10% 88.41% 88.70% 87.40% 37.40%  
4 581 581 1162 50.00% 90.89% 90.40% 89.39% 90.23% 40.23%  
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 the reduced size of the training set may impede learning. Try at 54 for everything, and also 198.  
 write arff files in random order so that individual odd instances have reduced impact   
           
negative 
threshold positives negatives total baseacc 

c4.5 
acc1 

c4.5 
acc2 

c4.5 
acc3 

c4.5 
mean difference  

1 54 54 108 50.00% 80.56% 86.49% 88.89% 85.31% 35.31% 4.29%
2 54 54 108 50.00% 75.00% 89.19% 75.00% 79.73% 29.73%  
3 54 54 108 50.00% 77.78% 81.08% 83.33% 80.73% 30.73%  
4 54 54 108 50.00% 77.78% 86.49% 75.00% 79.75% 29.75%  

           
negative 
threshold positives negatives total baseacc 

c4.5 
acc1 

c4.5 
acc2 

c4.5 
acc3 

c4.5 
mean difference variance 

1 54 54 108 50.00% 88.89% 83.78% 91.67% 88.11% 38.11% 4.00%
2 198 198 396 50.00% 82.96% 86.57% 85.07% 84.87% 34.87%  
3 198 198 396 50.00% 87.41% 85.07% 88.81% 87.10% 37.10%  
4 198 198 396 50.00% 77.78% 83.58% 82.09% 81.15% 31.15%  

           

  
* = comment on the difference in these figures; should be the same, though files is randomised. Perhaps calculate 
CI 

           
 looks like we have insufficient data at relevance = 1.      
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Inserted title 

 

nbayes       

corpus acc1 acc2 acc3 mean 
without 
title difference 

adi 68.42% 63.83% 72.63% 68.29% 81.97% -13.68% 
cacm 74.40% 72.22% 70.05% 72.22% 83.57% -11.35% 
cisi 69.26% 70.61% 70.93% 70.27% 78.72% -8.45% 
cran 67.19% 69.64% 69.73% 68.85% 72.51% -3.65% 
med 75.38% 73.85% 77.85% 75.69% 75.62% 0.07% 
time 55.13% 65.82% 58.97% 59.98% 59.98% 0.00% 
       
       
c4.5       

corpus acc1 acc2 acc3 mean 
without 
title difference 

adi 75.79% 79.79% 77.89% 77.82% 81.18% -3.35% 
cacm 83.57% 80.43% 76.81% 80.27% 86.76% -6.49% 
cisi 80.88% 82.40% 79.15% 80.81% 88.98% -8.17% 
cran 84.15% 81.25% 83.63% 83.01% 82.19% 0.82% 
med 80.00% 80.26% 85.60% 81.95% 81.01% 0.95% 
time 64.10% 72.15% 74.36% 70.20% 70.20% 0.00% 
       
       
corpus nb c45 totaldocs docswithtitles proportion  
ADI -13.68% -3.35% 82 82 100.00%  
CACM -11.35% -6.49% 1587 1586 99.94%  
CISI -8.45% -8.17% 1460 1460 100.00%  
Cranfield -3.65% 0.82% 1400 1398 99.86%  
MED 0.07% 0.95% 1033 0 0.00%  
TIME 0.00% 0.00% 423 0 0.00%  

 

CACM – no empty 

 

     

alg acc1 acc2 acc3 accuracy
unadjusted 
acc diff 

naivebayes 71.63% 66.57% 67.89% 68.70% 83.57% -14.87% 
k* 64.33% 67.42% 66.48% 66.07% 72.30% -6.23% 
mlp 90.73% 91.57% 89.58% 90.63% 90.81% -0.19% 
c4.5 68.54% 72.47% 76.62% 72.54% 86.76% -14.22% 
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NN – hidden layers 

chose medline and cacm as these worked best with nn in 
the basic comparison 
     
cacm traintime = 200,    
hiddenlayers acc1 acc2 acc3 accuracy

1 69.38202 63.76405 67.04225 66.73
2 89.88764 68.82023 63.09859 73.94
3 65.44944 87.92135 65.91549 73.10
4 89.60674 91.85393 90.42254 90.63
5 89.88764 85.67416 87.88732 87.82
6 86.51685 89.32584 78.02817 84.62
7 91.29214 85.67416 86.19718 87.72
8 88.76405 92.13483 87.04225 89.31
9 89.88764 84.26966 88.16901 87.44
10 89.04494 83.70787 85.07042 85.94
11 91.29214 89.04494 89.85916 90.07
12 89.32584 79.21348 87.32394 85.29
13 88.76405 86.79775 80 85.19
14 89.32584 83.70787 88.4507 87.16
15 90.44944 89.88764 88.4507 89.60
16 90.44944 89.32584 82.53521 87.44
17 89.88764 83.42697 84.78873 86.03
18 90.16854 83.14607 87.04225 86.79
19 90.73034 85.95506 78.87324 85.19
20 92.13483 89.88764 82.53521 88.19

     
medline tt = 200    
hiddenlayers acc1 acc2 acc3 accuracy

1 74.35897 76.15385 78.1491 76.22
2 76.41026 79.23077 78.40617 78.02
3 90.76923 93.07692 91.51671 91.79
4 91.53846 86.15385 89.97429 89.22
5 88.97436 92.5641 82.00514 87.85
6 89.48718 92.5641 92.03085 91.36
7 91.53846 93.33333 87.91774 90.93
8 89.48718 92.30769 89.97429 90.59
9 91.79487 91.53846 89.46015 90.93
10 90.76923 92.82051 90.48843 91.36
11 89.23077 91.53846 91.77378 90.85
12 90.51282 91.53846 87.14653 89.73
13 90 92.5641 89.20309 90.59
14 92.05128 93.58974 89.20309 91.61
15 90.51282 92.30769 89.97429 90.93
16 90.76923 92.5641 88.68895 90.67
17 90.51282 93.07692 88.43188 90.67
18 90.51282 92.30769 91.00257 91.27
19 91.79487 91.53846 88.94602 90.76
20 92.82051 90.76923 90.23136 91.27
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NN – learning rates 

params: learnrate 0.3, momentum 0.2, validation set 80, validation threshold 20, hidden units 10 
      
traintime acc1 acc2 acc3 accuracy  

5 54.8718 58.46154 71.72237 61.68523  
10 63.33333 72.30769 75.83548 70.49217  
20 67.94872 72.05128 76.09255 72.03085  
50 70.25641 77.17949 75.57841 74.3381  

100 75.38462 81.28205 75.57841 77.41502  
200 82.30769 81.53846 75.57841 79.80819  

300 80.51282 81.53846 75.57841 79.2099
 - max reached here; probably due to use of 
validation set. 

400 80.51282 81.53846 75.57841 79.2099  
500 80.51282 81.53846 75.57841 79.2099  
700 80.51282 81.53846 75.57841 79.2099  

1000 80.51282 81.53846 75.57841 79.2099  
      
params: learnrate 0.1, momentum 0.2, validation set 80, validation threshold 20, hidden units 10 
traintime acc1 acc2 acc3 accuracy  

5 50 50 50.12854 50.04285  
10 52.30769 54.8718 56.81234 54.66394  
20 70.25641 72.30769 75.57841 72.71417  
50 70 73.33333 75.32134 72.88489  

100 69.48718 74.61539 75.06427 73.05561  
200 69.48718 78.71795 75.06427 74.42313  

300 69.48718 82.5641 75.06427 75.70518
 - max reached here; probably due to use of 
validation set. 

400 69.48718 82.5641 75.06427 75.70518  
500 69.48718 82.5641 75.06427 75.70518  
700 69.48718 82.5641 75.06427 75.70518  

1000 69.48718 82.5641 75.06427 75.70518  
 

 

Corpus sizes 

Corpus Examples 
Naïve 
Bayes C4.5 K* 

Neural 
net 

time 232 19.95% 40.41% 26.79% 22.58%
adi 248 63.94% 62.35% 41.18% 65.20%
cacm 1044 67.14% 73.52% 44.60% 81.63%
cran 1136 45.01% 64.39% 17.58% 69.30%
med 1146 51.25% 62.01% 37.90% 87.51%
cisi 5090 57.43% 77.97% 39.02% 82.63%
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Appendix B – Cranfield rankings 
 

Taken verbatim from cranqrel.txt, available as part of the Cranfield collection via anonymous 
FTP at �Hftp.cs.cornell.edu/pub/smart/cran/  

 
Here you will find two files containing relevance judgements. 
CRAN.REL was taken from Ed Fox's Virginia Disc 1 CD-ROM 
The other came courtesy of Donna Harman (who is a star). 
 
Ed's file contains query-doc id pairs 
 
Donna's file contains the same query doc-id pairs AND includes 
degrees of relevance which are discussed below. 
 
For some strange reason the files are identical for all but 
three lines.  I leave it to you to figure out the difference. 
 
 
 
I am attaching my copy of the qrels for cranfield 1400  
(cranqrel.txt), including the codes for relevancy scale,  
which were added here.  The qrels are in three columns:   
the first is the query number, the second is the relevant  
document number, and the third is the relevancy code.   
The codes are defined by Cleverdon as follows: 
 
     "1.  References which are a complete answer to the question. 
         
      2.  References of a high degree of relevance, the lack of which 
          either would have made the research impracticable or would 
          have resulted in a considerable amount of extra work. 
      
      3.  References which were useful, either as general background 
          to the work or as suggesting methods of tackling certain 
aspects 
          of the work. 
 
      4.  References of minimum interest, for example, those that 
have been 
          included from an historical viewpoint. 
 
      5.  References of no interest." 
 
Obviously no 5's are included in the qrels. 
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Appendix C – ARFF format 
 

This entire appendix taken verbatim from [14]. 

Attribute-Relation File Format (ARFF) 

 

April 4th, 2006 

This documentation is superceded by the WekaDoc Wiki. Version specific documentation is 
available there: 

 

    * 3.4.x 

    * 3.5.x 

 

April 1st, 2002 

 

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of 
instances sharing a set of attributes. ARFF files were developed by the Machine Learning 
Project at the Department of Computer Science of The University of Waikato for use with the 
Weka machine learning software. This document descibes the version of ARFF used with 
Weka versions 3.2 to 3.3; this is an extension of the ARFF format as described in the data 
mining book written by Ian H. Witten and Eibe Frank (the new additions are string attributes, 
date attributes, and sparse instances). 

 

This explanation was cobbled together by Gordon Paynter (gordon.paynter at ucr.edu) from 
the Weka 2.1 ARFF description, email from Len Trigg (lenbok at myrealbox.com) and Eibe 
Frank (eibe at cs.waikato.ac.nz), and some datasets. It has been edited by Richard Kirkby 
(rkirkby at cs.waikato.ac.nz). Contact Len if you're interested in seeing the ARFF 3 proposal. 

Overview 

 

ARFF files have two distinct sections. The first section is the Header information, which is 
followed the Data information. 

 

The Header of the ARFF file contains the name of the relation, a list of the attributes (the 
columns in the data), and their types. An example header on the standard IRIS dataset looks 
like this: 

 

   % 1. Title: Iris Plants Database 

   %  

   % 2. Sources: 

   %      (a) Creator: R.A. Fisher 

   %      (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 

   %      (c) Date: July, 1988 

   %  

   @RELATION iris 
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   @ATTRIBUTE sepallength  NUMERIC 

   @ATTRIBUTE sepalwidth   NUMERIC 

   @ATTRIBUTE petallength  NUMERIC 

   @ATTRIBUTE petalwidth   NUMERIC 

   @ATTRIBUTE class        {Iris-setosa,Iris-versicolor,Iris-virginica} 

   

 

The Data of the ARFF file looks like the following: 

 

   @DATA 

   5.1,3.5,1.4,0.2,Iris-setosa 

   4.9,3.0,1.4,0.2,Iris-setosa 

   4.7,3.2,1.3,0.2,Iris-setosa 

   4.6,3.1,1.5,0.2,Iris-setosa 

   5.0,3.6,1.4,0.2,Iris-setosa 

   5.4,3.9,1.7,0.4,Iris-setosa 

   4.6,3.4,1.4,0.3,Iris-setosa 

   5.0,3.4,1.5,0.2,Iris-setosa 

   4.4,2.9,1.4,0.2,Iris-setosa 

   4.9,3.1,1.5,0.1,Iris-setosa 

   

 

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and @DATA 
declarations are case insensitive. 

Examples 

 

Several well-known machine learning datasets are distributed with Weka in the 
$WEKAHOME/data directory as ARFF files. 

The ARFF Header Section 

 

The ARFF Header section of the file contains the relation declaration and attribute 
declarations. 

The @relation Declaration 

 

The relation name is defined as the first line in the ARFF file. The format is: 

 

    @relation <relation-name> 

    

 

where <relation-name> is a string. The string must be quoted if the name includes spaces. 
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The @attribute Declarations 

 

Attribute declarations take the form of an orderd sequence of @attribute statements. Each 
attribute in the data set has its own @attribute statement which uniquely defines the name of 
that attribute and it's data type. The order the attributes are declared indicates the column 
position in the data section of the file. For example, if an attribute is the third one declared then 
Weka expects that all that attributes values will be found in the third comma delimited column. 

 

The format for the @attribute statement is: 

 

    @attribute <attribute-name> <datatype> 

    

 

where the <attribute-name> must start with an alphabetic character. If spaces are to be 
included in the name then the entire name must be quoted. 

 

The <datatype> can be any of the four types currently (version 3.2.1) supported by Weka: 

 

    * numeric 

    * <nominal-specification> 

    * string 

    * date [<date-format>] 

 

where <nominal-specification> and <date-format> are defined below. The keywords numeric, 
string and date are case insensitive. 

 

Numeric attributes 

 

Numeric attributes can be real or integer numbers. 

Nominal attributes 

 

Nominal values are defined by providing an <nominal-specification> listing the possible values: 
{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...} 

 

For example, the class value of the Iris dataset can be defined as follows: 

 

    @ATTRIBUTE class        {Iris-setosa,Iris-versicolor,Iris-virginica} 

    

 

Values that contain spaces must be quoted. 

String attributes 
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String attributes allow us to create attributes containing arbitrary textual values. This is very 
useful in text-mining applications, as we can create datasets with string attributes, then write 
Weka Filters to manipulate strings (like StringToWordVectorFilter). String attributes are 
declared as follows: 

 

    @ATTRIBUTE LCC    string 

    

 

Date attributes 

 

Date attribute declarations take the form: 

 

    @attribute <name> date [<date-format>] 

    

 

where <name> is the name for the attribute and <date-format> is an optional string specifying 
how date values should be parsed and printed (this is the same format used by 
SimpleDateFormat). The default format string accepts the ISO-8601 combined date and time 
format: "yyyy-MM-dd'T'HH:mm:ss". 

 

Dates must be specified in the data section as the corresponding string representations of the 
date/time (see example below). 

ARFF Data Section 

 

The ARFF Data section of the file contains the data declaration line and the actual instance 
lines. 

The @data Declaration 

 

The @data declaration is a single line denoting the start of the data segment in the file. The 
format is: 

 

    @data 

    

 

The instance data 

 

Each instance is represented on a single line, with carriage returns denoting the end of the 
instance. 

 

Attribute values for each instance are delimited by commas. They must appear in the order 
that they were declared in the header section (i.e. the data corresponding to the nth @attribute 
declaration is always the nth field of the attribute). 
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Missing values are represented by a single question mark, as in: 

 

    @data 

    4.4,?,1.5,?,Iris-setosa 

    

 

Values of string and nominal attributes are case sensitive, and any that contain space must be 
quoted, as follows: 

 

    @relation LCCvsLCSH 

 

    @attribute LCC string 

    @attribute LCSH string 

 

    @data 

    AG5,   'Encyclopedias and dictionaries.;Twentieth century.' 

    AS262, 'Science -- Soviet Union -- History.' 

    AE5,   'Encyclopedias and dictionaries.' 

    AS281, 'Astronomy, Assyro-Babylonian.;Moon -- Phases.' 

    AS281, 'Astronomy, Assyro-Babylonian.;Moon -- Tables.' 

    

 

Dates must be specified in the data section using the string representation specified in the 
attribute declaration. For example: 

 

    @RELATION Timestamps 

 

    @ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"  

 

    @DATA  

    "2001-04-03 12:12:12" 

    "2001-05-03 12:59:55" 

    

 

Sparse ARFF files 

 

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be explicitly 
represented. 

 

Sparse ARFF files have the same header (i.e @relation and @attribute tags) but the data 
section is different. Instead of representing each value in order, like this: 
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    @data 

    0, X, 0, Y, "class A" 

    0, 0, W, 0, "class B" 

    

 

the non-zero attributes are explicitly identified by attribute number and their value stated, like 
this: 

 

    @data 

    {1 X, 3 Y, 4 "class A"} 

    {2 W, 4 "class B"} 

    

 

Each instance is surrounded by curly braces, and the format for each entry is: <index> 
<space> <value> where index is the attribute index (starting from 0). 

 

Note that the omitted values in a sparse instance are 0, they are not "missing" values! If a 
value is unknown, you must explicitly represent it with a question mark (?). 

 

Warning: There is a known problem saving SparseInstance objects from datasets that have 
string attributes. In Weka, string and nominal data values are stored as numbers; these 
numbers act as indexes into an array of possible attribute values (this is very efficient). 
However, the first string value is assigned index 0: this means that, internally, this value is 
stored as a 0. When a SparseInstance is written, string instances with internal value 0 are not 
output, so their string value is lost (and when the arff file is read again, the default value 0 is 
the index of a different string value, so the attribute value appears to change). To get around 
this problem, add a dummy string value at index 0 that is never used whenever you declare 
string attributes that are likely to be used in SparseInstance objects and saved as Sparse 
ARFF files.
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Appendix D – Examples entries from collections 
 
ADI 

.I 1 

.T 
the ibm dsd technical information center - a total systems approach 
combining traditional library features 
and mechanized computer processing 
.A 
H. S. WHITE 
.W 
the ibm data systems division technical 
 information center (tic) provides an operating developmental 
system for integrated and compatible mechanized 
 processing of technical information received within the 
organization. 
  the system offers several advantages : 
     1 . it is a sophisticated mechanized system for dissemination 
and retrieval; 
     2 . it is compatible with all library mechanized 
  records produced under a standard processing format 
  within ibm libraries, providing such traditional tools 
  as 3 x 5 catalog cards, circulation records and overdue 
notices; 
     3 . it is reversible, so that discontinuation of machine 
processing would not cause gaps in the library's 
  manual records; 
     4 . it is controlled, producing statistical evaluations 
of its own program efficiency; 
     5 . it is user-oriented, providing 24-hour copy access 
and immediate microfilm access to its documents; 
     6 . it is relatively simple, relying on the ibm 1401 
  data processing system for all its processing and output. 
 
  since the system has been operating for over a year, the 
conclusions drawn are based on actual experience . 
 
 
CACM 
 
.I 74 
.T 
A High-Speed Sorting Procedure 
.B 
CACM July, 1959 
.A 
Shell, D. L. 
.N 
CA590704 JB March 22, 1978  6:20 PM 
.X 
1919 5 74 
74 5 74 
74 5 74 
74 5 74 
852 5 74 
864 5 74 
865 5 74 
864 6 74 
1175 6 74 
232 6 74 
232 6 74 
308 6 74 
309 6 74 
309 6 74 
74 6 74 
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74 6 74 
74 6 74 
74 6 74 
3187 6 74 
 
 
CISI 
 
.I 2 
.T  
Use Made of Technical Libraries 
.A  
Slater, M. 
.W 
This report is an analysis of 6300 acts of use 
in 104 technical libraries in the United Kingdom. 
Library use is only one aspect of the wider pattern of 
information use.  Information transfer in libraries is 
restricted to the use of documents.  It takes no 
account of documents used outside the library, still 
less of information transferred orally from person 
to person.  The library acts as a channel in only a 
proportion of the situations in which information is 
transferred. 
Taking technical information transfer as a whole, 
there is no doubt that this proportion is not the 
major one.  There are users of technical information - 
particularly in technology rather than science - 
who visit libraries rarely if at all, relying on desk 
collections of handbooks, current periodicals and personal 
contact with their colleagues and with people in other 
organizations.  Even regular library users also receive 
information in other ways. 
.X 
2 5 2 
32 1 2 
76 1 2 
132 1 2 
137 1 2 
139 1 2 
152 2 2 
155 1 2 
158 1 2 
183 1 2 
195 1 2 
203 1 2 
204 1 2 
210 1 2 
243 1 2 
371 1 2 
475 1 2 
552 1 2 
760 1 2 
770 1 2 
771 1 2 
774 1 2 
775 1 2 
776 1 2 
788 1 2 
789 1 2 
801 1 2 
815 1 2 
839 1 2 
977 1 2 
1055 1 2 
1056 1 2 
1151 1 2 
1361 1 2 
1414 1 2 
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1451 1 2 
1451 1 2 
 
 
Cranfield 
 
.I 12 
.T 
some structural and aerelastic considerations of high 
speed flight . 
.A 
bisplinghoff,r.l. 
.B 
j. ae. scs. 23, 1956, 289. 
.W 
some structural and aerelastic considerations of high 
speed flight . 
  the dominating factors in structural design of high-speed 
aircraft are thermal and aeroelastic in origin .  the subject 
matter is concerned largely with a discussion of these factors and 
their interrelation with one another .  a summary is presented 
of some of the analytical and experimental tools available to 
aeronautical engineers to meet the demands of high-speed flight 
upon aircraft structures .  the state of the art with respect to 
heat transfer from the boundary layer into the structure, modes 
of failure under combined load as well as thermal inputs and 
acrothermoelasticity is discussed .  methods of attacking and 
alleviating structural and aeroelastic problems of high-speed 
flight are summarized .  finally, some avenues of fundamental 
research are suggested . 
 
 
MED 
 
.I 38 
.W 
studies of nickel carcinogenesis fractionations of nickel in             
ultracentrifugal supernatants of lung and liver by means of dextran 
gel  
chromatography .                                                         
  chromatographic fractionations have been performed on the              
ultracentrifugal supernatants of homogenates of rat lung and liver by    
the use of columns of dextran gel (sephadex g-100) . a major 
proportion  
of nickel in these tissue supernatants has been demonstrated to be       
firmly bound to macromolecular constituents . following acute and        
chronic inhalation of carcinogenic levels of nickel carbonyl, the        
predominant increases in the concentrations of nickel have been 
observed 
in the macromolecular fractions . these findings are consistent with 
the 
previous demonstration of nickel in purified preparations of 
ribonucleic 
acids (rna) from several rat tissues, and with the observation of        
increased concentrations of nickel in high-molecular weight rna from     
lung and liver following the inhalation of nickel carbonyl .             
 
 
TIME 
 
*TEXT 099 02/15/63 PAGE 038 
 
CENTRAL AFRICA TROUBLE BREWING CUSTOMS AGENTS AND SPECIAL BRANCH 
 
DETECTIVES CHARGED WITH SAFEGUARDING THE BORDERS OF THE SPRAWLING 
 
RHODESIAN FEDERATION HAVE BEEN RUN RAGGED LATELY . IN THE NORTH, 
THERE 
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IS A STEADY TRAFFIC OF WHITE MERCENARIES AND AFRICAN SOLDIERS FROM 
THE 
 
ROUTED KATANGESE ARMY, WHO SLIP ACROSS THE CONGO LINE TO PEDDLE THEIR 
 
WEAPONS TO EAGER WHITE AND BLACK RHODESIANS WHO MAY ONE DAY USE THEM 
ON 
 
EACH OTHER . IN THE EAST, SMUGGLERS FROM THE PORTUGUESE COLONY OF 
 
MOZAMBIQUE MAKE THEIR WAY THROUGH THE WILD, MOUNTAINOUS BUSH TO BRING 
 
IN DAGGA WEED (MARIJUANA) AND TAKE OUT GOLD STOLEN BY WORKMEN IN 
 
RHODESIAN MINES . LAST WEEK THE HARRIED BORDER GUARDS HAD A NEW CHORE 
 
: TO PREVENT THE SMUGGLING OF HOPS INTO SOUTHERN RHODESIA . AT 
 
BEITBRIDGE, ON THE LIMPOPO RIVER, A CUSTOMS OFFICER DUTIFULLY 
SEARCHED 
 
THE LUGGAGE OF A VACATIONER RETURNING FROM SOUTH AFRICA, THEN 
 
WHISPERED, " MAN, WHAT DOES A HOP LOOK LIKE ? NO ONE HERE HAS EVER 
 
SEEN ONE ! " THE HOP CRISIS RESULTS FROM A $28 DUTY ON EVERY POUND OF 
 
IMPORTED HOPS IMPOSED BY THE GOVERNMENT OF SIR ROY WELENSKY BECAUSE 
TAX 
 
REVENUE FROM COMMERCIAL BEER HAS NOT BEEN UP TO EXPECTATIONS . " THIS 
 
IS DUE TO THE SPREAD OF HOME BREWING, " COMPLAINED THE GOVERNMENT . 
 
HOME BREWERS ARE GENERALLY RESPECTABLE CITIZENS, RANGING FROM 
RAILROAD 
 
ENGINEERS AND CIVIL SERVANTS TO BANK CLERKS AND GARAGE MECHANICS MEN 
 
WHO FIND COMMERCIAL BEER TOO EXTRAVAGANT FOR THEIR BUDGETS . THE NEW 
 
DUTY WOULD MAKE HOME BREW TWICE AS COSTLY AS THE COMMERCIAL STUFF . 
 
QUICKLY FORMING A PRESSURE GROUP GRANDLY NAMED THE AMATEUR BREWERS & 
 
VINTNERS ASSOCIATION, SOME 300 DO-IT-YOURSELF BRAUMEISTERS FIRED OFF 
A 
 
PROTEST TO WELENSKY, POINTING OUT THAT HOME BREWING " HAS TAKEN PLACE 
 
IN THE UNITED KINGDOM FOR CENTURIES, AND AS THE BRITISH EMIGRATED TO 
 
THE COLONIES, THIS TRADITION HAS BEEN ACCEPTED AS THE BIRTHRIGHT OF 
THE 
 
ORDINARY MAN BY EVERY GOVERNMENT OF THE COMMONWEALTH . 


