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Abstract

Understanding temporal information in natural language text is fundamen-
tal for deep language understanding, and key to many advanced natural lan-
guage processing (NLP) applications, such as question answering, information
extraction, document summarization and dialog systems. These techniques

can be applied in news, medical, history and other domains.

In this dissertation, we first present our hybrid system to automatically
extract temporal information from raw text by extracting events, temporal
expressions and identifying temporal relations between entities. Our system
had a competitive performance in the temporal evaluation shared task - Tem-
pEval 2010. Then we present a metric that we developed for the evaluation
of temporal annotation. Our metric has been adopted by the premier tempo-
ral evaluation shared task, TempEval 2013, to evaluate participating systems.
We also present a question-answering (QA) system that can answer temporal
questions with temporal reasoning. Our developed QA system can be used to
evaluate temporal information understanding capability. Finally, we describe

our contributions in improving the existing temporal resources.
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1 Introduction

Understanding temporal information in natural language text is required for
deep language understanding. Researchers from different areas, such as linguis-
tics, computer science, philosophy, and cognitive science, have been working for
the last few decades on understanding the temporal information in language;
but it has not been of much interest to the larger Artificial Intelligence (AI)
community until very recently. The recent emergence of Natural Language
Processing (NLP) applications, such as, question answering, summarization,
information extraction and dialog systems have drawn attention to the need
for temporally aware systems, so that these applications can extract tempo-
ral meanings from documents. Such capabilities will enable us to implement

better NLP applications.

For example, a doctor wants to know from a patient’s historical records
if the patient had any abdominal pain a few months before the CT scan was
performed. To answer this question automatically from the patient’s historical
records, we need a system with temporal information understanding capability,
which would help us to automatically extract the medical events, the tempo-
ral expressions, classify the temporal relations, and then make inferences to

identify how these events are related to each other in terms of time.



Moreover, understanding temporal information would help in many other
domains and applications as well. For example, in news domains, having an
automated system to summarize articles in chronological order or a system
for temporal visualization could help many readers, e.g. individuals who have
trouble reading and understanding, be it dyslexic people or those who are not
native English speakers. Temporal information extraction would benefit in

almost any applications involving the processing of natural language text.

1.1 Temporal Information in Natural Lan-

guage

In this section we demonstrate a toy example to explain why temporal informa-
tion understanding is hard and why we need to use ideas from many different
areas, such as, linguistics, symbolic artificial intelligence, corpus linguistics,
etc. to build an automated system to understand temporal information. Con-

sider the example in Figure 1.1.

The advisor @me to the department @)

The student €ame @EIBE® his advisor’s@rriva).

The (HEETR QD - (EHOED
The student was @roductive in the (neeting

Figure 1.1: A toy example

To understand the temporal information from this text, the first task is



to extract the temporal entities: events' — cameqqvisor, COMECtudent, aTTivAl,
meeting, productive and meeting; and temporal expressions — 17am and
11:30am. Next, we have to identify how the temporal entities are re-
lated to each other: the first pair of entities, came,guisor and 1lam, is si-
multaneous with each other, but the next pair, cameg,gen: and arrival, is not
simultaneous, rather the student came before the advisor’s arrival. Here we
have the same word, came, in both cases, but because of the context and

signals, such as at and before the temporal relations are different.

After extracting and interpreting this temporal information, we still have
implicit information that is not explicitly mentioned in the document. For
example, human readers can infer that the student came before the meeting,
as the student came before the advisor’s arrival, which happened before the
meeting started. However, this information is not explicitly mentioned and
we need to build a mechanism, such as a temporal structure (shown in Figure
1.2) to show how all entities are related to each other in terms of time. With
such mechanism, we can answer temporal questions from documents by doing

the temporal reasoning.

Figure 1.2: Temporal structure for the toy example in Figure 1.1

In the next section, we list the research questions that we answer in this

thesis.

! Events are loosely referred to events and states.



1.2 Research Questions

We attempt to answer the following research questions in this thesis:

1. How can we build and improve the state-of-the-art in temporal informa-

tion extraction and temporal relation identification?
2. How can we answer temporal questions with temporal reasoning?
3. How can we improve the existing temporal evaluation metrics?

4. How can we improve the existing temporal resources?

1.3 Contributions

In this thesis, we develop techniques to solve a portion of the language un-
derstanding problem — temporal information understanding. Our techniques
of combining deep language understanding and machine learning classifier at-
tain the state-of-the-art performance in temporal information extraction tasks.
Next we present a temporal question-answering system capable of temporal
reasoning. Our system can answer yes/no, list and factoid questions. We
propose new temporal evaluation metrics to evaluate the automated systems
extracting temporal information from text. We also improve the existing tem-

poral resources to advance the research in this area.

In the next section, we describe how we structure the thesis.

1.4 Thesis Structure

Recent work on Computational Linguistics or Natural Language Processing
(NLP) community is mostly driven by corpus based approaches. Our imple-

mented system is also influenced by the same approaches. Additionally, we



also borrow many ideas from Artificial Intelligence and Linguistics research
to have a deeper understanding of temporal information. In Chapter 2, we
describe the related work on analytical linguistics, philosophy and symbolic
Al and in Chapter 3, we describe the corpus linguistics based approaches for
the task. Chapter 2 and 3 include the temporal information understanding

background and the summary of current approaches.

Then in Chapter 4, we describe our system TRIOS and TRIPS for
understanding temporal information from texts. Our approach for all the
tasks is best described as a hybrid between linguistically motivated solutions
and machine learning classifiers, in which we try to get the best from both
worlds. Next in Chapter 5 we implement a temporal question-answering

system by doing temporal reasoning.

In Chapter 6, we propose new evaluation metrics to evaluate temporal
information from text. Our proposed metric has been adopted for evaluating
the next Temporal Evaluation Shared Task. Based on temporal question an-
swering, we develop another evaluation metric that can evaluate the temporal

information understanding capability.

Next in Chapter 7, we describe the contributions of this thesis in improv-
ing the existing temporal resources. Finally in Chapter 8, we summarize our

contributions and discuss possible future directions of this research work.



2 Related Linguistics and
Artificial Intelligence

Research

In this chapter, we explore the existing research done on Linguistics and Ar-
tificial Intelligence areas related to temporal information understanding. We

borrow many insightful ideas from this research in the thesis.

We start the chapter by introducing linguistic theories on tense and lexical
aspect to understand time in language. Next, we discuss the computational

approaches from Artificial Intelligence to represent and reason about time.

2.1 Tense

In order to draw conclusions about time-related events, we have to understand
the temporal information conveyed by the language. To understand the tem-
poral location and relations of events, the first thing we should consider is
tense. Tense usually gives us information about when the event occurred, i.e.
is it before the speech time, or during the speech time, or after the speech

time, etc. Consider the following examples:

(2.1). I knew the world is flat. (past tense)



(2.2). I know the world is not flat. (present tense)

(2.3). I will know the world is round. (future tense)

In English, the present tense usually locates events as occurring roughly at
the speech time; past tense usually refers to a time prior to the speech time;
and future tense usually refers to a time after the speech time. The examples
(2.1), (2.2) and (2.3) above follow these rules and we can easily identify that
knowing world is flat occurred before knowing world is not flat and knowing

that the world is round occurred after knowing that the world is not flat.

However, the relation between simple verb tense and points in time is not
straightforward. For example, the use of present tense does not always mean
that the event coincides with the speech point. The present tense can also be
used to locate events as occurring in the past, as in “then he tells me...”, or in
the future, as in “She leaves next week”, and also to express habitual events,

as in “he loves mowvies”.

More complications occur when we consider some of the other verb tenses.

Consider the following examples:

(2.4). He arrived late.

(2.5). He had arrived late.

Although both refer to events in the past, representing them in the same
way seems incorrect. Example (2.5) seems to refer to another unnamed event,
i.e. he arrived late in reference of some other event. The generally accepted so-
lution to handle this phenomenon is proposed by Reichenbach (1947) (Rei47),
who suggests the notion of reference time. Reichenbach develops a theory

that tense gives information about three types of times:

S - the time of speech



R - the reference time

E - the time of event/state

The reference time can be provided by temporal adverbs, or often can
be determined by the discourse context. Here we do not present Reichen-
bach’s original SRE relations, but instead discuss the variant described as
SRE triples by Song and Cohen (1991) (SC91). Song and Cohen’s list covers
the same number of tenses as Reichenbach’s, but unlike Reichenbach’s their
list is unambiguous and precise. In presenting these SRE triples, we keep the

names of these tenses as proposed by Reichenbach.

In the simple tenses the reference time is same as the event time, i.e. E =
R. The three forms are generated by varying the relationship between R and
S:

Simple Past  Simple Present  Simple Future
(S>R=E) (S=R=E) (S< R =E)

Naima sang Naima sings  Naima will sing

The perfect tenses, on the other hand, have the event time preceding the
reference time, and differ in terms of how the reference time and speech time

are related. Thus we have:

Past Perfect Present Perfect Future Perfect
(S>R >E) (S=R>E) (S<R>E)

Naima had sung Naima has sung Naima will have sung

This analysis also provides an account of the posterior tenses, in which R

< E:



Posterior Past Posterior Present Posterior Future
(S>R < E) (S=R < E) (S<R<E)

Naima was going to sing Naima is going to sing Naima will be going to sing

In the current corpus-based approaches, tense information is widely used
for temporal relation classification. Most of the systems combine the tense
and aspect! attributes (section 3.1.1) to get similar benefits of Reichenbach’s
distinctions with the machine learning classifiers. Influenced by Reichenbach,
Derczynski and Gaizauskas (2011) (DG11) also propose a markup language

for the tenses of verbs and temporal relations between verbs.

2.2 Lexical Aspect

In this section we explore the temporal properties of events, such as whether
events last, change, or complete. This would help us to identify more fine

grained relationships (described in section 2.6) between events.

Lexical Aspect or Aktionsarten (German for kind of action) distin-
guishes between different subclasses of events based on the temporal properties,
such as whether an event has ended or is ongoing, whether it is happening at
a point in time, or over a period of time. In the literature on aspect, Vendler’s
(1967) (Ven67) work has been the foundation for future research. Considering
the properties described above, Vendler divides the event expressions into four
general classes: states (stative), processes (activity), accomplishments,
and achievements. Following are the descriptions of each of the event expres-
sions, as well as some of the diagnostic techniques suggested in Dowty (1986)

(Dow86) for identifying examples of each kind.

'This aspect is different from lexical aspect. Check section 3.1.1 for details.
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An event is a stative if it has the subinterval property, i.e. if its truth at
an interval implies that it is true at all subintervals. Example (2.6) and (2.7)

are example of stative.

(2.6). Sharif is happy.

(2.7). I believe the world is flat.

There are a number of ways to identify statives. For example, stative verbs

are distinctly odd when used in the progressive form.

(2.8). *Sharif is being happy.

(2.9). *I am believing that the world is flat.

Statives are also odd when used as imperatives.

(2.10). *Believe that the world is flat.

An event is an activity if it has a restricted subinterval property, i.e. its
truth at an interval implies that it is true for most subintervals. Example

(2.11) to (2.13) are instances of activity expressions.

(2.11). Puspa is running,.
(2.12). Neema lives in New York.

(2.13). Arshad drove a BMW.

Unlike statives, activity expressions are fine in both the progressive and

imperative forms.

(2.14). Neema is living in New York.
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(2.15). Drive a BMW!

However, like statives, activity expressions do not allow temporal modifiers,
such as in five minutes (example (2.16) to (2.18)), but they allow duration
modifiers, such as for five minutes (example (2.19) to (2.21)).

(2.16). *Neema lives in New York in a month.
(2.17). *Jhuma drove a Mini in an hour.
(2.18). *Marzina is running in an hour.
(2.19). Neema lived in New York for a month.
(2.20). Jhuma drove a Mini for an hour.

(2.21). Marzina is running for an hour.

Accomplishment expressions, on the other hand, describe events that
have a natural end point and result in a particular state. Example (2.22) and

(2.23) are instances of accomplishment.

(2.22). They climbed the mountain in two days.

(2.23). Marzina fell asleep in an hour.

In these examples, there is an event that is seen as occurring over a period

of time that ends when the intended state is accomplished.

Activities and accomplishments can be distinguished by how they are mod-
ified by distinct temporal adverbials. In general, accomplishments can be mod-
ified by “in” temporal expressions, while simple activities cannot. See example

(2.24) and (2.25).

(2.24). *Neema lived in New York in a year.
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(2.25). *Marzina stayed at home in a month.

Finally, similar to accomplishment expressions, the achievement ones re-

sult in states. A few examples of achievement expressions are below.

(2.26). Neema recognized the man.

(2.27). Marzina woke up.

However unlike accomplishments, an achievement event happens in an in-
stant and is not equated with any particular activity leading up to the state.
Moreover, unlike activity and accomplishment expressions, achievements can-

not be modified by in/for adverbials.

Both accomplishments and achievements are events that result in states.
They are sometimes characterized as subtypes of a single aspectual class called
telic eventualities (culminates). Both types of events have the property that

if they are true at an interval, they are false at any subintervals of the intervals.

Summary of the properties of aspectual classes are given in Table 2.1 and

these classes are shown pictorially in Figure 2.1 (due to (Pas88)).

Aspectual class  Dynamic Culminate Durative Example

Stative NO NO YES know, have
Activity YES NO YES walk, paint
Accomplishment YES YES YES build, destroy
Achievement YES YES NO notice, win

Table 2.1: Different properties of the aspectual classes

Moens and Steedman (1988) (MS88) extend Vendler’s classification on
event ontology. They present a tripartite event structure, which captures if

an event is in preparatory phase, culmination or in consequent phase. This



13

stative activity
s O
-« : | o
N/
| believe the world is flat He drove a BMW

: achievement
accomplishment

<+
o Q|
He fell asleep in an hour She woke up

Figure 2.1: Pictorial Representations of Lexical Aspect

event ontology is shown pictorially in Figure 2.2 and with an example in Fig-

ure 2.3.

preparatory process consequent state

I//////////////{////////////I

culmination

Figure 2.2: Tripartite event ontology by Moens and Steedman (MS88)

They introduce another class of events called points which are instan-
taneous and involve no culmination. Additionally, their ontology includes a
computational model for the aspect calculus of events. The properties of as-
pectual categories and the lexical aspect shifts among these properties are

modeled in a transition network (Figure 2.4).
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climbing the mountain being at the top

I//////////////!////////////I

reaching the summit
of Mt. Everest
1

Figure 2.3: Tripartite event ontology by Moens and Steedman (MS88) with

Example

EVENTS

atomic extended

HABITUAL
STATE

i — T prepprocess™  CULMINATED
CULMINATION B afiae

+ conseq.

CONSEQUENT
STATE

— culmination + culmination

PROGRESSIVE
\ STATE
)
- conseq. POINT e PROCESS
iteration LEXICAL
STATE

STATES

Figure 2.4: Transition network for Moens and Steedman’s (MS88) aspectual

class
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In our work for identifying temporal relations (section 4.5), we use the
event properties and classifications (section 3.1.1, 7.1.2) that are influenced by

the above mentioned event classifications.

2.3 Temporal Information in Discourse

Many of the approaches to understanding temporal information discussed in
the previous sections assume sentences in isolation without the discourse con-
text. In reality, the discourse context is necessary to understand language,
in this case, the temporal ordering of all events in discourse. Consider the
example (2.28), due to Webber (Web88). With the proposed approaches in
the previous sections, we cannot find the relationships among events in dis-
course. Webber (Web88) proposes a theory of anaphoric reference to handle

such instances.

(2.28). (a) John went into the florist shop.
(b) He had promised Mary some flowers.

(c) So he picked out three red roses, two white ones, and one pale pink.

There has been other remarkable work on temporal information in dis-
course, such as, Dowty’s (Dow86) temporal discourse interpretation principle
(TDIP); Hwang and Schubert’s (HS92) work on tense tree to improve Reichen-
bach’s proposal to handle embedded clauses, and to handle discourse context
that involves shifts in temporal perspectives; Kamp and Reyle’s (1993) (KR93)

work on using Discourse Representation Theory (DRT) for tense and aspect.

In addition to the discourse context, pragmatic principles and background
world knowledge seem to play a crucial role in understanding temporal infor-
mation. Therefore, theories concerning only tense and aspect in discourse are

insufficient. Consider the following examples:
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(2.29). Tag stood up. Kostas greeted him.
(2.30). Tag fell. Kostas pushed him.
(2.31). Naima opened the door. The room was pitch dark.

(2.32). Naima switched off the light. The room was pitch dark.

The paired examples: (2.29) and (2.30), or (2.31) and (2.32) have the
same syntax. Hence using the compositional semantics one would predict that
the events stand in similar temporal relations. In (2.29) the order in which
the events are described matches their temporal order, whereas in (2.30) the
descriptive order of events does not match temporal order. On the other hand,

the event and state in (2.31) temporally overlap, whereas in (2.32) they do not.

The work of Lascarides and Asher (1993) (LA93) attempts to provide a

formal account of the pragmatic influences for event ordering in discourse.

The examples above explain that a complete understanding of temporal in-
formation requires the understanding of discourse and pragmatics information.
However, in this dissertation, we primarily capture the syntactic and semantic
information of language to understand the temporal information. Future com-
putational linguistic approaches should consider the above mentioned work to

develop better systems.

2.4 Temporal Logic

The next task after understanding temporal information in language is to com-
putationally represent time (temporal logic) and reason about time (temporal
reasoning). If we have an easy to understand expressive representation, the
temporal reasoning (TR) system can perform effectively. Hence, temporal

logic is a very important component of TR. We will describe three main ways
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to represent time in logic: first-order logic with temporal arguments, modal

temporal logic and reified temporal logic.

2.4.1 The Temporal Argument

The Temporal Argument (Hau87) method represents time with an extra pa-
rameter in a first-order predicate calculus. Functions and predicates are ex-
tended with an additional temporal parameter to represent time. For ex-
ample, “Naushad ate with Neema on February 21%!,” can be represented by

eat(Naushad, Neema, 02-21), in which the date is in MM-DD format.

Temporal Argument (TA) is a natural and simple way to represent time
in language, but it does not give any special status to time, making it less

expressive than other methods.

To perform temporal reasoning in TA, a temporal ordering relation (<),
along with related axioms and temporal constant ¢, representing present time,

has to be introduced.

2.4.2 The Modal Temporal Logic

Another way to represent the concept of time is to extend the language of pred-
icate calculus with modal temporal operator. For example in the statement,
“Naushad danced with Neema,” the semantic representation should capture
that there is a time prior to the speech time when the dancing occurred. It
can be stated as, there is a time ¢’ before the speech time (¢) when Naushad
dances with Neema is true. Prior (1968) (Pri68) describes this basic analysis
for the past tense using Minimum Tense Logic K;. In his analysis, it would be

as follows:

¢ = Naushad dances with Neema

P¢ is true at time t iff there is a ¢’ prior to ¢ such that ¢ is true at time ¢".
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Here, P¢ clearly represents Naushad danced with Neema considering speech

time as t. Prior represents future tense in similar manner as:

F¢ is true at time ¢ iff there is a ¢’ after ¢ such that ¢ is true at time ¢’

Except for a few cases, Prior’s (Pri68) Tense Logic can match well with

Reichenbach’s (Rei47) use of Tense, which has been used by many applications.
Table 2.2 (due to (MPGO05)) compares Reichenbach’s and Prior’s proposals.

Relation Reichenbach Prior | English Tense | Example

S>R>E| Anterior Past PP¢ | Past Perfect | I had slept

S>R=E Simple Past P¢ Simple Past I slept

S >R < E | Posterior Past | PF¢ I would slept

S =R > E | Anterior Present | P¢ | Present Perfect | I have slept
S=R=E/| Simple Present [0) Simple Present | I sleep

S = R < E | Posterior Present | F¢ | Simple Future | I am going to sleep

S < R > E | Anterior Future | F'P¢ | Future Perfect | I will have slept
S<R=E]| Simple Future F¢ | Simple Future | I will sleep

S < R < E | Posterior Future | F'F¢ I shall be going to sleep

Table 2.2: Comparison of Reichenbach’s and Prior’s proposals

Along with the temporal operators P and F, two additional operators H

(for “has always been”) and G (for “is always going to be”) are also specified.

The logical system K; consists of the following four axioms:

(2.33). ¢ — HF¢: What is, has always been going to be;

(2.34). ¢ — GP¢: What is, will always have been;

(2.35). H(¢p — o) — (H¢p — Hp): Whatever always follows from what always

has been, always has been;
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(2.36). G(¢ — ¢¥) — (Gp — Grp): Whatever always follows from what always

will be, always will be.

One short-coming of Minimal Tense Logic (MTL) is not being able to
represent the absolute precise time. To handle this short-coming, an extension
is proposed to incorporate operator AT(t), where ¢ is a temporal constant, and

AT (t)¢ expressing that the proposition ¢ is true at time ¢.

In terms of expressiveness, MTL seems to be better than TA, at least for
some statements. For instance, Naushad will have danced with Neema, would

be represented in TA by:
Jt. now < t A 3ty. t; <t Adance(Naushad, Neema,ty)

This representation is hard to understand. MTL representation simplifies
it by:
(P(F dance(Naushad, Neema)))

Another benefit of MTL is modularity. It can easily combine other modal
qualifications such as belief, knowledge, etc. However, one disadvantage of
MTL is not being very efficient, as theorem proving in modal logic is more
difficult than in first-order logic. Another disadvantage of MTL is that it is

not as expressive as Reified Logic.

2.4.3 The Reified Temporal Logic

Reified approaches use first order logic but with higher expressive power that
allows one to discuss the truth of assertion. Reifying a logic requires moving
into a meta-language, in which a formula in the initial language becomes a
term in the new language. Hence in Reified logic, one can reason about the
particular aspects of the truth of expressions of the object (initial) language

through the use of truth predicates. First-order logic is usually taken as the
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object (initial) language - although modal logic can also be used as the object

language as well.

Reified Temporal Logic expresses when things are true. The truth predicate
takes a formula in the initial language (e.g. first-order logic) as one argument,
and takes a temporal object as another argument. For “Naushad ate with
Neema on February 21%¢,” we can represent the non-temporal part, “Naushad
ate with Neema,” in first-order logic as, eat(Naushad, Neema). Hence, in
Reified Temporal Logic, we have a truth predicate, HOLDS, which has one
argument as eats(Naushad, Neema), and another argument as the temporal

object — February 21%., i.e. HOLDS (eats(Naushad, Neema),02 — 21).

In this example, one could mean that Naushad and Neema have been eating
the whole day, or at a single time during the day, or at different times during
the day. The truth predicate is not only used to express when something is
true, but also the pattern of its truth, i.e. it is true during the whole time or at
a sub-interval or any other pattern of the temporal expression. This was not
possible in Temporal Argument or Modal Temporal Logic. These properties
add another dimension of time and make it very expressive, which is why the

most influential work used reified temporal logic (All83), (McD82).

2.5 Temporal Primitives

In this section, we explore the temporal reference, or time expression and
relation. The first question to ask is what would be primitive for the ontology

of time, time intervals (periods) or time points (instants).

Earlier representations of time considered instants or points as primitive,
as in Situation Calculus (MH82), McDermott (1982) (McD82), and also later
Vilain and Kautz et al. (1986, 1990) (VK86), (VKvB90), Miller and Schubert
(1990) (MS90), and others. On the other hand, the use of intervals better
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mimics the way humans generally conceptualize time. Considering this, Allen
(AlI83), (All84) proposes his influential work using intervals as primitive. We
cite some examples from (All83) to understand why interval was preferred by

Allen.

(2.37). We found the letter at twelve noon.
(2.38). We found the letter yesterday.
(2.39). We found the letter while John was away.

(2.40). We found the letter after we made the decision.

In (2.37), “at twelve noon” refers to a precise point in time at which the finding
event occurred (or was occurring). In (2.38), “yesterday” refers to an interval
in which the finding event occurred. One thing to note is, both “twelve noon”
and “yesterday” refer to a date system, which are explicit times. In general,
the references to temporal relations are both implicit and vague. In particular,
the majority of temporal references are implicitly introduced by tense and by
the description of how events are related to other events. For example, in
(2.39), “while John was away” or in (2.40) “when the decision was made,”
cannot refer to a time point, which is very common in English. Hence, Allen

(Al183) prefers Temporal Interval Algebra instead of Point Algebra. Details on

Interval Algebra versus Point Algebra can be found in the following sections.

2.6 Temporal Relations

There is a trade-off between expressiveness and efficiency when considering the
temporal relations and expressions. We can distinguish the temporal relations
in two classes: Qualitative temporal relations and Metric Relations. In this

section, we discuss these classes.
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2.6.1 Qualitative Relations

Allen (All83) develops an Interval Algebra with thirteen basic (binary)
interval relations, in which six are inverses of the other six, excluding equality.
These relations are mutually exclusive and they may exist between two
intervals. Following are 13 binary interval relations, which are also shown
pictorially in Table 2.3:

a. before (<), after (>);

b. overlap (o), overlappedBy (0i);

c. start (s), startedBy (si);

d. finish (f), finishedBy (fi);

e. during (d), contains (di);

f. meet (m), metBy (mi);

g. equality (=)

These temporal relations are transitive, e.g. If A before B and B before C,
using the transitive property of before, we can easily conclude that A before C.
Allen proposes a 13x13 transitive table that models the transitive behavior of
all Allen relations. The transitive property of temporal relations is very useful
for extracting temporal relations among all possible intervals, as most of the

relations are implicit and vague.

Allen proposes this by maintaining a graph of temporal relations among
intervals, where the nodes are the intervals and the arcs are labeled by arbitrary
disjunctions over the thirteen basic Allen relations. Allen assumes that the
network always maintains complete information about how its intervals could
be related. When a new temporal relation between two intervals is added, all
consequences are generated by computing the transitive closure of the temporal

relations. Each new fact adds a constraint about how its two intervals could be



Allen’s Temporal Symbolic Pictorial
Relation Representation Example
X equal Y X=Y XXX
YYY
X before Y X<Y XXX YYY
X after Y X>Y YYY XXX
X meets Y XmY XXXYYY
X met by Y XmiY YYYXXX
X starts Y XsY XXX
YYYYYY
X started by Y XsiY YYYYY
XXX
X finishes Y XY XXX
YYYYY
X finished by Y Xfiy YYYYY
XXX
X during Y XdyY XXX
YYYYY
X contains Y XdiY XXXXX
YYY
X overlaps Y XoY XXX
YYY
X overlapped by Y XolY YYY
XXX

Table 2.3: Allen’s Temporal Interval Relations

23
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related, which may introduce new constraints between other intervals through
the transitivity rules governing the temporal relations. Allen proposes this
constraint propagation algorithm with time complexity O(N?), where N is
the number of intervals. It is linear to add one arc to the network, and the
number of modification that can be made is 13 times the number of binary

relations between all nodes, which is O(N?), specifically 13% 3% (N —1)% (N —2).

A problem with Allen’s constraint propagation algorithm is that even
though it does not generate inconsistencies, it does not detect all inconsisten-
cies in its input. Which means, it is sound but not complete. The constraint
propagation algorithm never compares more than three arcs at a time, and
Allen (1983) (All83) shows by example that there could be temporal networks
where each subgraph of three arcs is consistent without having a consistent
labeling for the whole graph. If complete checking is incorporated, this algo-
rithm becomes exponential, making it intractable. The main problem is that
it does not restrict the labels on the arcs; any disjunction of basic relations is
allowed, i.e. it admits many possible relations between intervals (2! relations

to be exact).

Vilain, Kautz and van Beek (1986, 1990) (VKS86), (VKvB90) propose a
tractable solution by restricting to a subset of Interval Algebra using Point
Algebra instead of Interval Algebra. They use 181 possible relations (All91)
instead of 213 = 8192 relations of Allen.

Allen (1983) (All83) shows that intervals can be represented with points as
well. For example, interval X can be represented with z1, x2, where x1 is the
start point and z2 is the end point and 21 < 222. All the basic Allen relations

can be rewritten using a pair of points.

Back to the Point Algebra discussion — four point relations between the

beginning and the end of two intervals are used to define the Point Algebra.

2Allen shows it for interval ¢ with the start point ¢- and the end point ¢+.
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Any basic relation between intervals can be represented by defining the four

relations R1 through R4 as shown in Figure 2.5.

xf - X2
R R2
e R4
i - = —- 2

Figure 2.5: Decomposing an interval relation

The labels R1 through R4 on the point relations are taken from the set
{<,=,>}, so there are only three basic relations instead of thirteen. A table
for convex relation? is given in Figure 2.6. There is a mapping from convex
relation to the disjunctions of interval relations, but convex relations cannot
express all the disjunctions of interval relations. For example, 2 > y1 maps to
the disjunction {> m}, but the convex relation does not cover the disjunction
{< si >},

The point algebra of convex relations can be easily mapped to a subset of
Allen’s interval algebra using Table 2.6. This smaller subset of interval algebra
with 181 possible labels, rather than 2'% = 8192 labels, now makes detecting
inconsistencies tractable. Vilain et al. (1990) (VKvB90) prove that Allen’s
constraint propagation algorithm is sound and complete if the reduced set of
labels is adopted. In general, Allen Interval Algebra (All83) is more expressive
and flexible, but Point Algebra (VK86) is more efficient.

3 A convex relation is a relation between four points where {<}, {=},{>},{<}, {>} labels

are only allowed
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w2
X2 = y2 = H2 = y2
¥
2 2yl <
n2 =yl m xl =yl
o | fi |di
= - Ei 1=yl
x2=yl d | f | o
mi 1=yl
-0
xl %1
1l =y2 = =
y2 | w2

Figure 2.6: Mapping between Interval relations and Point relations

2.6.2 Metric Relations

If time reference is available as a date or in a precise numeric form then we
have a numeric absolute temporal reference. We can timestamp the assertion
in absolute numeric values. The durations can be numerically represented
and easily computed by subtracting numerical values and we have a constant
time algorithm that efficiently answers queries about occurrences. However
the problem is that we need to have the time reference as a date or in a
precise numeric form, which is not available in many scenarios. But there are
also many applications, where the presence of time reference is a reasonable
assumption, e.g. applications involving real-time data gathering, databases
of transactions on a single machine, a central machine maintaining banking

records, or a scheduler, and many more.

However, it is not always possible to get the precise time reference for all
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instances. Usually the temporal distance between events is not available. In
such cases, a useful representation proposed by Dean and McDermott 1987
(DM87) as TimeMap is an acyclic directed graph (nodes represent events
and arcs represent distances between nodes). This representation maintains
a partial ordering between events. In TimeMap, events are represented by
a (lower bound, upper bound) constraint. These bounds of the unknown
events are computed by adding distances between known nodes. If there are
several possible paths to an unknown node, then the minimal path distance
is the lower bound and the maximum path distance is the upper bound. New
available information can be added as temporal constraints that can change

distance bounds. An example of a TimeMap is shown in Figure 2.7 (due to

(Vil94)).

30,45]

start

: end
dancing

dancing [10,+0¢]

—

meet

— \_ lolanda
- and:

60,90 __—

—

_— [30.+00]

party

Figure 2.7: An Example of TimeMap

Timegraph: Another representation of metric relations is Timegraph

(MS90). Timegraph is explained in detail in section 5.3.1.

2.6.3 Qualitative and Metric Relations

Qualitative and metric relations can be integrated in a single system. Kautz
and Ladkin ((Kau91), (KL91)) implement one such system. They keep metric
and qualitative interval based components separated and connect them with

an inter-component relationship. The reasoning task is done by solving each
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component separately and then translating and combining the components to

converge to a global solution.

2.7 Temporal Reasoning

A significant number of applications can be implemented with the methods
described in previous sections. In this section we summarize the existing tem-

poral reasoning systems, their approaches and compare among them.

2.7.1 Temporal Reasoning Systems

In this section we discuss and compare different Temporal Reasoning systems
based on the study done by Yampratoom and Allen (YA93). Yampratoom
and Allen (YA93) compare among TimeLogic by Koomen(Koo89), MATS
by Kautz and Ladkin (Kau91) (KL91), Time Graph by Miller and Schubert
(MS90), Time Graph II by Gerivini and Schubert et al. (GSS93), Tachyon
by Arthur and Stillman (AS92), and TMM by Dean and McDermott (DM8T)
(Sch89). These systems vary considerably in underlying mechanism, expressive

power, and scale up ability. Following is a brief overview of each system:

TimeLogic: TimeLogic by Koomen (Koo89) is an interval based system.
It performs transitive closure computations on intervals. It uses automatically
created reference intervals to limit constraint propagations. It cannot handle

metric information.

MATS: MATS by Kautz and Ladkin (Kau91), (KL91) handles both quan-
titative (metric) and qualitative (Allen) constraints, including disjunction
constraint. Allen constraints are interval based and metric constraints are

point based. MATS performs transitive closure computations on intervals for
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Allen constraints, and uses constraint satisfaction for point based metric rea-

soning.

Time Graph: Time Graph by Miller and Schubert (MS90) also handles
both metric and qualitative information, but cannot handle disjunction rela-
tionship. It uses a partial order graph, in which nodes represent time points.
Directed links between points represent relations between points (< or <).

The timegraph is partitioned into chains with possible links between chains.

Time Graph-II: Time Graph II by Gerevini and Schubert et al. (GSS93)
is the successor of Time Graph. It also uses the timegraph data structure.
Time Graph II supports a full set of point relations (<, =, <, #). Time Graph
IT automatically structures the timegraph for efficiency. Time Graph II does

not handle metric information, which was handled in Time Graph.

Tachyon: Tachyon by Arthur and Stillman 1992 (AS92) can handle both
metric and qualitative information, but it simplifies the disjunction con-
straints by presenting the first found solution. This feature does not produce
the most general solution as done by other systems. Hence, (YA93) did not
use this feature in their evaluation. Tachyon performs constraint satisfaction
for point based metric reasoning and translates qualitative constraints into

quantitative ones by introducing the concepts of epsilon and infinity.

TMM: TMM by Dean and McDermott (DM87) and (Sch89) is a temporal
database management system. It uses temporal constraint graph (TCG) data
structure to construct a time map with single point relations (<, =, <). It can
handle both metric and qualitative information but cannot handle disjunction

relationship.



30

2.7.2 Comparison of different Temporal Reasoning Sys-

tems

The differences of these systems are evident in the descriptions. Table 2.4
additionally gives a good overview of the differences. Because of these differ-
ences and due to the different degree of optimization done on these systems,
an absolute comparison is not useful. Since these systems do not exactly have
the same expressivity, Yampratoom and Allen (YA93) consider measurements
on assertion time, query time and how well systems scale up to the growing
amount of data to compare the performances. In the next section we discuss

how these systems perform in practice.

2.7.3 Performance of Temporal Reasoning Systems in

Practice

To evaluate different temporal reasoning (TR) systems, Yampratoom and
Allen (YA93) generate a database of train schedules with temporal constraints
to schedule the trains. Their experiments with different sized datasets show
that for large temporal datasets — where information is added incrementally
throughout the execution of the program — systems using incompletely con-
nected graphs (TMM, Time Graph and Time Graph II) seem to be the best
options. Even though these systems do not offer the constant query time,
the saving at assertion time is so substantial that the relatively small perfor-
mance penalty for queries is a reasonable tradeoff. On the other hand, these
systems do not offer the expressiveness since they are using the point based
system, instead of the interval based one. Among these systems, Time Graph
IT handles a wider range of point based relations, as shown in Table 2.4. But
unlike TMM and Timegraph, Time Graph II does not handle the metric rela-

tions. Hence, the decision among these three system are determined by their
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Underlying Mechanism

Criteria Systems using constraint satisfaction problem at assertion time
and fixed query time

System TimeLogic, MATS and Tachyon

Criteria | Systems that build graph structures and
may require a search at query time to compute an answer

System Time Graph, Time Graph II, TMM

Ezpressive Power

Criteria Disjunctive information about time intervals

System TimeLogic and MATS

Criteria | Supports simple point relations <, =, <

System Time Graph and TMM

Criteria Supports full point relations <, =, <, #

System Time Graph II

Quantitative/Quantatitive Information

Criteria | Handles only qualitative constraint

System TimeLogic and Time Graph II

Criteria | Handles quantitative constraint and qualitative (without disjunction relationship)
System TMM, Time Graph and Tachyon

Criteria Handles both qualitative and quantitative constraint

System MATS

Persistence of Facts

System TMM
Implementation Language
Language | C++

System Tachyon
Language | Lisp

System Rest

Table 2.4: Comparison of different Temporal Reasoning system
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reasoning capabilities rather than raw performance.

On the other hand, if the assertion time is not an issue — e.g. in an appli-
cation where the database can be constructed in advance — then the constraint
satisfaction approaches (MATS and TimeLogic) can be used. It requires a huge
memory for the final database, as these systems are fully connected graphs.
Additionally, the performances of MATS and TimeLogic are so unsatisfac-
tory in large datasets that these systems are not practically usable, even if
the database is constructed in advance. According to (YA93), these systems
might be paying unnecessary penalty due to garbage collection, so they suggest
the development of a new algorithm that does not create so many temporal

objects.

If we consider a small dataset, then all the systems can be used effectively.
The choice can be determined by the expressivity and other reasoning facilities
that each TR system provides. For example, unlike other systems, TMM can
reason about the persistence of facts. This type of reasoning is very critical
for database applications. Hence, TMM would be a good choice for these
applications. As another example, the interval-based relations have been useful
in planning algorithms and in natural language applications. Therefore, if
the dataset is small, MATS and TimeLogic could be effectively used in these
applications. On the other hand, if the execution time is still critical, the

tradeoff must be considered between the assertion and the query time.

In section 5.4, we describe our system for temporal question-answering with
temporal reasoning. We consider the Timegraph (MS90) out of all the rea-
soning systems since we want a system to handle large documents with faster
operations. The additional expressiveness of disjunctions, which is missing in

the Timegraph, does not contribute much in our applications.
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2.8 Summary

First, we present the linguistic theories on tense and lexical aspect for under-
standing temporal information. Next, we present the Artificial Intelligence
theories of computational approaches on representing and reasoning temporal

information.

We present the influential work of Reichenbach (1947) (Rei47) to under-
stand tense. Reichenbach’s proposed that tense gives information about three
types of times: (i) the time of speech, (ii) the reference time and (iii) the time

of event/state.

Next, we describe linguistic theories to understand whether an event has
ended or is ongoing, whether it is happening at a point in time or over a period
of time. We also describe Vendler’s (1967) (Ven67) statives, activity, accom-
plishment and achievement classes. Additionally, we briefly explain Moens
and Steedman’s (1988) (MS88) extension on Vendler’s proposal. Finally, we
briefly discuss about the influences of discourse and pragmatics on identifying

temporal ordering of events in language.

In the next sections, we present Artificial Intelligence theories to represent
and reason about temporal information. We start by describing the Temporal
Logic with possible solutions of Temporal Arguments (Hau87), Modal Tempo-
ral Logic (Pri68) and Reified Temporal Logic. Next we explore the temporal
primitives - time interval & time points and temporal relations. Finally,
we conclude by describing the existing approaches for temporal reasoning.
We compare among temporal reasoning approaches and summarize which ap-

proach is more appropriate for a specific scenario.
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3 Related Corpus Linguistics

Research

In this chapter we describe the corpus linguistics solutions for temporal in-
formation understanding, which has been the dominant approach in recent

years.

The methodologies described in the previous chapter to understand, rep-
resent and reason about temporal information, use approaches from analytical
linguistics and symbolic Al. In recent years, however, with the rise of com-
putational power and the availability of a wide range of texts, researchers
shifted more towards analyzing the data with corpus linguistics solutions to

solve natural language problems.

Here, we cite some benefits of the corpus linguistic approach from McEnery

and Wilson (1996) (MW96):

e Corpus guided research reveals both the variety and the distribution of
the forms of expression in a real sample of language. The distribution
is important for algorithm builders to focus on the most frequently oc-
curring cases, to aid in the construction of probabilistic models, and to

guide psycholinguistics or cognitive psychological research.

e The annotation schemes, and the corpora which is annotated accord-

ing to the schemes, together provide objective data resources that can
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be shared, argued over, and refined by the computational linguistics
community. The comparison among the annotations done by human
annotators according to the same scheme, can be used to decide how

well-defined and comprehensive the scheme is.

e Annotated corpora are resources that can be exploited by machine-
learning algorithms to acquire annotation capability without the neces-

sity of implementing an underlying analytical model.

e Annotated corpora provide an objective basis to evaluate competing al-

gorithms.

In the next sections of this chapter, we describe the temporal annotation
schemes, the existing systems, and their approaches of using the annotated

corpus to extract temporal information from text.

3.1 Annotating Temporal Information

3.1.1 Annotating Events and States

An event is usually a cover term for situations that occur at a specific time
or last for a period of time (PCI*03). It may be expressed by tensed (ex-
ample (3.1)) or untensed verbs (3.2), nominalizations (3.3), adjectives (3.4),

predicative clauses (3.5), or prepositional phrases (3.6) (PCIT03).

(3.1). A fresh flow of lava, gas and debris erupted there Saturday.

(3.2). Prime Minister Benjamin Netanyahu called the prime minister of the
Netherlands to thank him for thousands of gas masks his country has

already contributed.
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(3.3). Israel will ask the United States to delay a military strike against Iraq
until the Jewish state is fully prepared for a possible Iraqi attack.

(3.4). A Philippine volcano, dormant for six centuries, began exploding with

searing gases, thick ash and deadly debris.

(3.5). “There is no reason why we would not be prepared,” Mordechai told

the Yediot Ahronot daily.

(3.6). All 75 people on board the Aeroflot Airbus died.

To annotate events, we need to decide on:

o Which semantic types to annotate? Just events, or events and states?

What should be the difference between events and states?
o Which textual representation of the event/state should be annotated?

o Which attributes should be associated with the annotated events/states?

These are described in details below:

The semantic types to annotate

Most work on annotating event expressions, except TimeML (PCIT03), does
not distinguish between events and states. Merging both events and states
assumes that the distinction between events and states is too difficult or in-

significant for the purpose of annotation.

For the short term, it seems reasonable to start with a merged class, how-
ever in the long term the merged class would ignore the fact that there are
semantic differences between events and states, which would limit the infer-

ences that can be drawn.
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Textual representations to annotate

The next question to ask is which text spans should be annotated, i.e. what
would be the textual representation of the event? Considering the events
conveyed by the verb clauses, one could decide that the entire clause should be
annotated (Filatova and Hovy, 2001 (FHO1)); or one could decide to annotate
just the verb groups or just the heads of verb groups for simplicity (Pustejovsky
et al., 2003 (PCIT03)).

Attributes of Events and States

After annotating the events we need to figure out which attributes should be
associated with the annotated events/states. This depends on the application
for which we are annotating the corpus. Pustejovsky et al. (2003) (PCIT03)
associate tense, aspect, class, modality and polarity information with events
for their news corpus. The event classes they propose are: occurrence (crash,
merge), state (on board, love), reporting (say, report), intensional action (at-
tempt, offer), intensional state (believe, want), aspectual (begin, stop), and
perception (see, hear). They classify these classes as there are distinct tem-

poral inferences that can be drawn from each of these event classes.

We list all the TimeML event attributes in Table 3.1. Pustejovsky et al.
make minor changes in tense information for TempEval-2 (VSCP10). We

report the updated attributes in Table 3.1.

3.1.2 Annotating Temporal Expressions

The most obvious temporal information to annotate in text are the temporal
expressions (as found in temporal adverbials); that is, expressions that refer
to times (April 7, 2012), durations (four years), or frequencies (daily).

Distinguishing these different types of temporal expressions is important to
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event attribute possible values

tense present, past, future, prespart, pastpart, infinite, none
aspect progressive, perfect, perfect progressive, none

pos verb, noun, adjective, preposition, other

class occurrence, state, report, aspectual, perception,

intensional state, intensional action

modality to, should, would, could, can, might, none

polarity positive, negative

Table 3.1: TempEval Attributes for Event

locate the events in terms of absolute times (calendrical time) or in terms of

relation to other events.

One must deal with the following kinds of temporal expressions for anno-

tations:

Specific calendrical dates, e.g. 26 March 1971, or 21st February 1952,

or December 16, 1971, etc.

Contextually dependent temporal expressions, such as now, tomorrow,
Sunday, which have different values at different times, and are inter-

preted in terms of the speech time or the document creation time.

Relational expressions relative to time - first week of summer, and events

- two days before the New Year.

Vague expressions like several months ago, sometime in the summer, etc.

There has been significant efforts to annotate and recognize temporal ex-
pressions. Recognizing temporal expressions is an integral part of many In-

formation Extraction (IE) shared tasks (e.g. MUC-6 and 7 Named Entity
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Recognition tasks, ACE-2004 Event Recognition task). There are a number
of annotation schemes, such as Ferro et al. (2003) (FGMWO03), Setzer and
Gaizaukas (2000) (SG00), and TERN 2004 (Fer04). Among these, the most
widely used annotation is TERN 2004 (Fer04). TimeML’s (PCI*03) tempo-
ral expression annotation is inherited from TERN annotations. Recently it
is more widely used because it incorporates other annotations like events and

temporal relations.

In TimeML annotation, the text span for temporal expression can be a
multi-word entity (unlike events) or a single-word entity (like events). The

following grammatical categories are considered as TIMEX !:

e Noun (including proper nouns): e.g. January, Sunday

e Noun Phrase (NP): e.g. the morning, Friday night, the last two years

e Adjective: e.g. current

e Adverb: e.g. recently

e Adjective or Adverb Phrase: e.g. half an hour long, two weeks ago,

nearly a month ago

Attributes of Temporal Expression

Each temporal expression in TimeML has an attribute type, which could be
DATE, TIME, DURATION, or SET. The format of the value attribute (an-
other non-optional attribute) is determined by the type of TIMEX. For ex-
ample, the value for a DURATION in TimeML should start with ‘P’, since
duration represents period of time. Table 3.2 shows some examples of type and

value attributes according to TimeML.

'TIMEX is the short-name for temporal expressions in TimeML
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Temporal expression Type Value

DCT (given):

March 1, 1998 TIME 1998-03-01
Sunday DATE 1998-03-01
last week DATE 1998-W08
mid afternoon TIME 1998-03-01TAF
nearly two years DURATION P2Y

each month SET P1M

Table 3.2: Examples of normalized values and types for temporal expressions

according to TimeML

There is another significant attribute mod, which is optional and does not
exist in most of the temporal expressions. Some examples of expressions with

mod attributes are listed in Table 3.3.

3.1.3 Annotating Temporal Relations

The next task is to annotate the relations between events? and temporal ex-
pressions or between events and events, given the annotations for the temporal

expressions and the events.

Annotating relations between times and events

The time-event relationship can be conveyed explicitly or implicitly. “Ex-
plicitly” means that the relation is explicitly conveyed in a sentence by a

prepositional phrase (example (3.7)).

(3.7). Neema flew to New York on Friday.

2 events are used loosely to represent both event and state
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Value Sample Expressions
Points BEFORE more than a decade ago
AFTER less than a year ago

ON-OR-BEFORE
ON-OR-AFTER

no less than a year ago

no more than a year ago

Durations LESS-THAN less than 2 hours long
MORE-THAN more than 5 minutes
EQUAL-OR-LESS  no more than 10 days
EQUAL-OR-MORE at least 10 days
Points and Durations START the early 1960s, the dawn of 2003
MID the middle of the month, mid-summer
END the end of the year
APPROX about three years ago

Table 3.3: Values of mod attribute
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(3.8). Naima arrived home at 9 p.m. Later she cooked noodles and then ate all

of it.

However, temporal expressions can also be conveyed in implicit ways, (ex-
ample (3.8)). There is no explicit temporal relation between cooked and 9
p.m., or between ate and 9 p.m.; but there are explicit event-event relations
between cooked and ate, and between cooked and arrived, and an explicit event-
time relation between arrived and 9 p.m. Therefore, we can infer the implicit

temporal relation between ate and arrived through these explicit relations.

TimeML (PCIT03) captures temporal relations with TLINK (tempo-
ral link). TLINK has an event id (to identify the event), a timez
id (to identify the temporal expression) and a temporal relation. To
annotate “John taught on Monday”, TimeML annotates taught as an
event (e.g. with event id el), Monday as a temporal expression (e.g.
with timex id tl1), and <TLINK eventInstanceID=el relatedToTime=t1

relType=IS-INCLUDED/> as a TLINK.

Initially TimeML selected Allen’s temporal relations (described in 2.6.1)
and annotated the TimeBank corpus (PHS*03). However, in later annotations
for the temporal evaluation shared tasks (TempEval 2007 (VGST07) and Tem-
pEval 2010 (VSCP10)), the creators of TimeML introduced a smaller subset
with before, after, before-or-overlap, overlap-or-after, overlap and vague rela-
tions. Their motivation for selecting a smaller set of relations was to make
the annotation task easier. However, their inter-annotator agreement was re-
ported 65% (event-time relations) and 72% (event-event relations) (VGST07),
whereas the inter-annotator agreement for the full set of relations in TimeBank
was 77%?2. The smaller set of relation is also unable to make fine distinctions

required for temporal reasoning. TempEval organizers have reverted back to

3http://timeml.org/site/timebank/documentation-1.2.html#iaa
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the original relation set for TempEval 2013%.

Allen interval relations and their equivalent TimeML relations are reported

in Table 3.4.

TimeML also annotates the temporal relations between the events and the

document creation time.

Annotating relations between events

Like event-time relations, event-event relations may be conveyed explicitly or
implicitly. For event-event relations, TimeML uses the same temporal relations

as event-time relations.

Both TempEval 2007 (VGST07) and TempEval 2010 (VSCP10) annotate
temporal relations between the main events of consecutive sentences. TempE-
val 2010 also introduces intra-sentential event-event relations when one event
syntactically dominates the other. For example, there will be a relation be-

tween e2 and el in the sentence, “The students heard., a fire alarm.s”.

Subordinating and Aspectual relations

It is not always possible to annotate temporal relations between all events in a
sentence. Take for example, John might have kissed the girl he met at the party
or John hoped to kiss the girl he met at the party (and did/did not). In both
cases, we cannot mark the temporal relation between kiss and meet, because
we do not have the information if it actually occurred or not. TimeML tries
to capture these subordinate relations with a SLINK or Subordinate Link.
TimeML, however, does not capture all possible subordinate links. It only

considers:

(3.9). Modal: Arshad promised Jhuma to buy some chocolates.

4http://www.cs.york.ac.uk /semeval-2013 /task1/



Allen’s Temporal Relation

TimeML Relation

Pictorial Example

X equal Y X simultaneous Y XXX
X identity Y YYY
X during Y
X before Y X before Y XXX YYY
X after Y X after Y YYY XXX
X meets Y X ibefore Y XXXYYY
X met by Y X iafter Y YYYXXX
X starts Y X begins Y XXX
YYYYYY
X started by Y X begun by Y YYYYY
XXX
X finishes Y X ends Y XXX
YYYYY
X finished by Y X ends by Y YYYYY
XXX
X during Y X is included Y XXX
YYYYY
X contains Y X includes Y XXXXX
YYY
X overlaps Y not represented XXX
YYY
X overlapped by Y not represented YYY
XXX

Table 3.4: Allen interval relations and their equivalent TimeML relations
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(3.10). Factive: Neema forgot that she was in Rochester last year.
(3.11). Counter-factive: Marzina was unable to sleep.
(3.12). Evidential: Akhtar said he bought some chips.

(3.13). Negative evidential: Naima denied she bought ice cream.

TimeML also annotates a special kind of link, ALINK (aspectual link),
to capture the relationship between aspectual event and its argument event.

Aspectual Link examples include:

(3.14). Initiation: John started to read.

(3.15). Culmination: John finished assembling the table.
(3.16). Termination: John stopped talking.

(3.17). Continuation: John kept talking.

(3.18). Reinitiates: John restarted the problem from scratch.

3.2 The Existing Corpus Based Systems

With the availability of the annotated corpus with temporal information
(PHST03) and the shared tasks on temporal information processing (VGS™07)
(VSCP10), many researchers implemented systems to extract events, temporal
expressions or identified temporal relations. In this section, we describe and

summarize the current approaches for these automated systems.



46

3.2.1 Event Extraction

Even before TimeML (PCIT03), there had been significant research done on
the event extraction task, such as MUC-7° or ACE® specifications, which pro-
duced Ahn [1], Aone and Ramos-Santacruz [4] and many other systems. In
those specifications, the task is not just to extract the event, but also to
extract the event arguments, assign roles and determine event co-references.
However, in these specifications, the entities are limited and use a pre-defined
set such as person, organization, location, geo-political entity, facility, vehicle,
weapon, etc. In this dissertation, we are interested in all events, as outlined by
TimeML, instead of a limited set of events with detailed information. Systems

extracting TimeML events are described below.

Saurf et al. (2005) (SKVPO05) implement an event and event feature ex-
traction system EVITA? for automatically extracting TimeML events. Their
system is a linguistically motivated rule-based system, with some statisti-
cal guidance for disambiguation. They consider morphosyntactic information
(Part-of-speech tags — POS, lemmatizing, lexicon lookup, shallow parsing, etc)
and lezical semantic information (WordNet synsets) to build their automated

system.

Boguraev and Ando (2005) (BAO5) present a data-driven approach, which
is trained on TimeBank corpus (PHST03). Their system is based on mor-

phosyntactic features and uses a Robust Risk Minimization (RRM) classifier.

Bethard and Martin (2006)’s (BMO06) apply machine learning classifier
SVM (Support Vector Machine) on the Timebank corpus to build models

®Message Understanding Conference
Shttp://www.nist.gov /speech /tests/ace/
TEVITA is a module of TARSQI Toolkit (Temporal Awareness and Reasoning Systems

for Question Interpretation). Details on TARSQI Toolkit and EVITA system can be found

in <http://www.timeml.org/site/tarsqi/index.html>
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for event extraction and event class classification. For this classification task,
they consider morphosyntactic features (text features, morphological features,
POS, syntactic-chunk label, time chunk label, modifying temporal, etc) and

lezical semantic features (WordNet hypernym feature).

Edinburgh-LTG (Grover, et al., 2010) (GTABI10) is a rule-based system
for TempEval-2 (VSCP10) which uses morphosyntactic knowledge and lezical
semantic information. Edinburgh-LTG uses WordNet hyponyms of event and
state concepts, and a lexicon of event triggers which is derived from the training

data.

JU-CSE-TEMP (Kolya, et al., 2010) (KEB10) is a rule-based system with
morphosyntactic information to extract events. This system is also developed

for TempEval-2.

TIPSem and TIPSem-B (Llorens et al., 2010) (LSNC10) implement CRF
classifiers to extract events in TempEval-2. Both of these systems use mor-
phosyntactic features. TIPSem additionally uses lexical semantic features and
sentence-level semantic features. Both TIPSem and TIPSem-B have the cur-

rent state-of-the-art performance on event extraction.

Summary of ewvent extraction on TimeML annotated corpora:
We have reported approaches for automated event extraction on TimeBank
(PHS'03) and TempEval-2 (VSCP10) corpora. Both of these corpora have
insignificant differences for event annotation, which make the performances
reported in both of these corpora comparable. In Table 3.5, we compare all
the systems in terms of their strategies (rule-based approach vs data-driven
approach) and the linguistic information that they used. The detailed perfor-
mances can be found in Verhagen et al. (2010) (VSCP10). We find by compar-
ing the performances that systems with both rule-based (Edinburgh-LTG) and
data-driven (TIPSem and TIPSem-B) approaches achieve top performances.

The performance mainly depends on the linguistic information used by the
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system. The best performing system, TIPSem, uses morphosyntactic, lexical
semantic and sentence-level semantic information, and competitive systems
use morphosyntactic and lexical semantic information. However, one excep-

tion is TIPSem-B, which achieves top performance with only morphosyntactic

information.
Strategy  System Linguistic Knowledge
Rule-based EVITA ms®
Edinburgh-LTG (GTAB10) ms, ls®
JU-CSE-TEMP (KEB10) ms
TRIPS (UA10) ms, ls, ss°
Data-driven Boguraev and Ando (2005) (BA05) ms
Bethard and Martin (2006) (BMO06) ms, Is
TIPSem-B (LSNC10) ms
TIPSem (LSNC10) ms, ls, ss
Hybrid TRIOS (UA10) ms, ls, ss

*morphosyntactic information, e.g. POS, lexical information, morphological information
blexical semantic information, e.g. WordNet synsets

¢sentence-level semantic information, e.g. Semantic Role labels

Table 3.5: Automated approaches for Event Extraction

3.2.2 Temporal Expression Extraction

Earlier systems that extracted temporal expressions were developed in the
scope of ACE Temporal Expression Recognition and Normalization (TERN)
task (Fer04), in which TIMEX2 tag denotes temporal expressions. There are a
few differences between TimeML’s (PCIT03) TIMEX3 and TERN’s TIMEX?2;
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notably, TIMEX2 includes post-modifiers® (prepositional phrases and depen-
dent clauses) that introduce a related event, but TIMEX3 does not. But to
a larger extent TIMEX3 is based on TIMEX2. TempEval-2 (VSCP10) had a
shared task on temporal expression extraction, which resulted many systems

to extract TIMEXS.

Ahn et al. (2005) (AAdRO5), Hachioglu et al. (2005) (HCDO05) and Poveda
et al. (2007) (PSTOT7) use a token-by-token classification for temporal expres-
sions, which is represented by a B-I-O encoding with lexical and syntactic

features. They evaluated on the TERN dataset.

Boguraev and Ando (2005) (BAO05), and Kolomiyets and Moens (2009)
(KMO09) report performances on the recognition of temporal expressions using
TimeBank as an annotated corpus. Boguraev and Ando’s work is based on a
cascaded finite-state grammar (500 stages and 15000 transitions). On the other
hand, Kolomiyets and Moens first filter certain phrase types and grammatical
categories as candidates for temporal expressions, and then apply Maximum

Entropy classifiers.

HeidelTime (Strétgen and Gertz, 2010) (SG10), TERSEO+T2T3 trans-
ducer (Saquete, 2010) (Saql0), USFD2 (Derczynski and Gaizauskas, 2010)
(DG10), Edinburgh-LTG (Grover, et al., 2010) (GTAB10), and JU-CSE-
TEMP (Kolya et al., 2010) (KEB10) participated in TempEval-2 as rule-based

systems to extract and normalize temporal expressions.

Other participants of TempEval-2, TIPSem, TIPSem-B (Llorens et al.,
2010) (LSNC10) and KUL (Kolomiyets and Moens, 2010) (KM10) apply ma-
chine learning algorithms to extract temporal expressions and use rule-based
systems to normalize them. Kolomiyets and Moens (2010) use a maximum

entropy classifier, and Llorens et al. (2010) use a CRF (Conditional Random

8For the phrase, five days after he came, TIMEX2 will annotate the whole phrase as the

temporal expression, whereas, TIMEX3 will only capture five days.
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Field) classifier.

Summary of temporal expression extraction on TimeML anno-
tated corpora: We have reported approaches for automated temporal expres-
sion extraction on TempEval-2 (VSCP10) and TERN (Fer04) corpora. Due
to the completeness and the improvements introduced by TimeML, it is cur-
rently considered as the standard annotation scheme. Hence, we summarize

the automated systems on TimeML annotation only.

In Table 3.6, we compare all the systems in terms of their strategies (rule-
based approach vs data-driven approach) to extract temporal expression. All
of these systems use rule-based approaches to normalize temporal expressions.
The detailed performances can be found in Verhagen et al. (2010) (VSCP10).
We find that systems with both rule-based (HeidelTime) and data-driven
(TRIOS) approaches can achieve top performances. HeidelTime (Strétgen
and Gertz, 2010) (SG10) currently has the state-of-the-art performance on

temporal expression extraction and normalization task.

Strategy =~ System

Rule-based  Boguraev and Ando (2005)
HeidelTime (Strotgen and Gertz, 2010) (SG10)
TERSEO+T2T3 transducer (Saquete, 2010) (Saq10)
Edinburgh-LTG (Grover, et al., 2010) (GTAB10)
USFD2 (Derczynski and Gaizauskas, 2010) (DG10)
JU-CSE-TEMP (Kolya et al., 2010) (KEB10)
Data-driven Kolomiyets and Moens (2009) (KMO09)
TIPSem, TIPSem-B (Llorens et al., 2010) (LSNC10)
KUL (Kolomiyets and Moens, 2010) (KM10)
TRIOS, TRIPS (UzZaman and Allen, 2010) (UA10)

Table 3.6: Automated approaches for Temporal Expression Extraction
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3.2.3 Temporal Relation Identification

Temporal relations identification task is mostly driven by the availability of
the annotated corpus for this particular task. Previously, most work focused
on identifying the temporal relations between events (MVW106), (CWJOT).
Later TempEval 2007 (VGS'07) introduced three tasks: intra-sentential event-
timex, event-dct®, and inter-sentential event-event relations. Finally, TempE-
val 2010 (VSCP10) introduced intra-sentential event-event relations when one

event syntactically dominates the other.

In this section, we describe how researchers approached these temporal

ordering identification tasks.

Earlier work on TimeML annotated corpus: Earlier work on tempo-
ral relation identification used TimeBank corpus, where the systems classified
full-sets of temporal relations, which include before, immediately—before, in-

cludes, begins, ends, simultaneous and their inverses.

Mani et al. (2006) (MVW™06) use a maximum entropy classifier on Time-
Bank corpus to classify temporal relations between pair of events. They take

the attributes of events from the TimeBank corpus.

Chambers et al. (2007) (CWJ0T7) train a Naive Bayes classifier that clas-
sifies relations between pairs of events. Initially, they train classifiers to auto-
matically learn TimeBank event attributes (class, tense, aspect, modality, po-
larity). They use the learned event attributes, morphosyntactic features (POS,
lemma, POS bigram, syntactic information, etc.), and lezical semantic features

(WordNet synsets) to classify temporal relations between a pair of events.

Work on TempEval 2007 (VGS*07): The temporal relation between
two entities depends on the types of entities being considered. Considering

this, TempEval 2007 (VGS*07) categorize the temporal relation identification

9dct is document creation time
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task into three subtasks. These subtasks are:

(A) Temporal relations between an event and a time expression in the same
sentence.

(B) Temporal relations between an event and the document creation time.

(C) Temporal relations between the main events of adjacent sentences.

For simplification, TempEval 2007 does not consider the full set of temporal
relations, instead it uses before, after, overlap, before-or-overlap, overlap-or-

after and vague.

WVALI (Puscasu, 2007) (Pus07) and XRCE-T (Hagege and Tannier, 2007)
(HT07) are rule-based systems which use morphosyntactic information. They

include timex and event attributes as semantic information.

CU-TMP (Bethard and Martin, 2007) (BM07), NAIST (Cheng, Asahara
and Matsumoto, 2007) (CAMO07), and USFD (Hepple, Setzer, and Gaizauskas,
2007) (HSGOT7) are data-driven systems, which also use morphosyntactic in-
formation and event and timex attributes. CU-TMP uses a support vector
machine (SVM) classifier, USFD uses two ML techniques (SVM and Naive-
Bayes), and NAIST uses an ML technique that combines SVM and hidden

Markov models.

Finally, LCC-TE (Min, Srikanth and Fowler, 2007) (MSF07) is a hybrid
system which combines rules and different ML techniques (SVM, Naive-Bayes,
maximum entropy, and decision trees). It also uses lexical semantics (lezical

semantic information and word sense disambiguation techniques.

Out of these systems, WVALI performs the best in the TempEval 2007.
Yoshikawa et al.’s (YRAMO09) system outperforms all the TempEval 2007 sys-
tems in a later published work. Their implementation is based on Markov
Logic Network (MLN), but their main focus is to approach all three problems
together, instead of handling them in isolation. Their approach of jointly doing
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all three tasks is discussed in the next section.

Work on TempEval 2010 (VSCP10): TempEval 2010 adds an addi-
tional subtask of intra-sentential event-event relations when one event syntac-
tically dominates the other. TempEval 2010 also uses the same relation set as

that of TempEval 2007.

USFD2 (Derczynski and Gaizauskas, 2010) (DG10) is a rule-based system
that uses morphosyntactic information. Derczynski and Gaizauskas highlight

the importance of the temporal signals for categorizing temporal relations.

TIPSem, TIPSem-B (Llorens et al., 2010) (LSNC10), NCSU (Ha et al.,
2010) (HBLL10), and JU-CSE-TEMP (Kolya et al., 2010) (KEB10) are data-
driven systems. TIPSem, TIPSem-B and JU-CSE-TEMP use CRF classifier,
and NCSU uses a Markov Logic Network classifier. In terms of features, JU-
CSE-TEMP and TIPSem-B consider morphosyntactic features and event and
timex attributes, whereas, NCSU uses event morphosyntactic features, lexical
semantic features and event and timex attributes. TIPSem additionally con-

siders sentence-level semantic features.

Summary of temporal relation identification on TimeML anno-
tated corpora: We have reported approaches for automated temporal re-
lation identification on TimeBank corpus (PHS*03), TempEval-1 (VGS*07),
and TempEval-2 (VSCP10) corpus. In Table 3.7, we compare all the systems
in terms of their strategies and the linguistic knowledge that they used for tem-
poral relation identification task. Although the rule based and the data-driven
approaches are both shown to be successful, most systems use the data-driven
approach. All of these systems use TimeML event and timex attributes, which
by itself is not enough. Therefore, most of the systems at least use morphosyn-
tactic information. Many systems also use lezical semantic information, and

a few of them also uses sentence-level semantic information.
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Corpus and Task  Strategy = System Knowledge
TimeBank® data-driven.  Mani et al. (MVW106) [MazEnt] e-attr®
event-event Chambers et al. (CWJ07)/Naive Bayes/ e-attr, ms®, ls?
TempEval® data-driven CU-TMP (BMO07) [SVM] e-attr, ms
event-event NAIST (CAMO7) [SVM and HMM] e-attr, ms
event-timex USFD (HSGO07) [SVM and Naive-Bayes] e-attr

Yoshikawa et al. (YRAMO09) /MLN] e-attr, ms, g-inf
JU-CSE-TEMP (KEB10) [CRF] e-attr, ms
NCSU (HBLL10) [MLN] e-attr, ms, Is, g-inf
TIPSem-B (LSNC10) /CRF] e-attr, ms
TIPSem (LSNC10) [CRF] e-attr, ms, ls, ss?
TRIOS, TRIPS (UA10) /[MLN] e-attr, ms, ls, ss
rule-based ~ WVALI (Pus07) e-attr, ms
XRCE-T (HTO07) e-attr, ms
USFD2 (DG10) e-attr, ms
hybrid LCC-TE (MSFO07) [SVM, MazEnt, e-attr, ms, ls

Nuaive-Bayes, Decision Tree]

classification on full set of TimeML relations, before, ibefore, includes, begins, ends, simultaneous and their inverses.
be-attr: entity attributes, e.g. event class, tense, aspect, polarity, modality; timex type, value.

‘ms: morphosyntactic information, e.g. POS, lexical information, morphological information, syntactic information
ds: lexical semantic information, e.g. WordNet synsets

“classification on restricted set of relations, before, after, overlap, before-or-overlap, overlap-or-after and vague
fg-inf: global inference, described in the next section

9ss: sentence-level semantic information, e.g. Semantic Role labels

Table 3.7: Automated approaches for Temporal Relation Identification
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3.2.4 Considering Global Inference

All the data-driven approaches, mentioned in the previous section, handle the
task of temporal ordering by just considering the entities (events or temporal
expression) and their features, and then applying machine learning algorithms.
It is obvious that these approaches are completely ignoring the global influence
of a specific pair of events, e.g. if we know A before B and B before C, then for
classifying between A and C, we know it should be A before C. If we handle this
task separately and if a similar probability exists between before and overlap,
then with the global information, we can easily infer that the relation should
be before. Allen (All83) proposes the 13x13 transitive table that models the

transitive properties of all Allen relations (check Allen relations in Table 2.3).

Bramsen et al. (2006) (BDLB06) and Chambers and Jurafsky (2008)
(CJO8) use transitive properties to consider the global inference. Bramsen et al.
(2006) induce the temporal directed acyclic graph (TDAG). At first they gener-
ate the probabilities for pairwise relations produced by local classifiers. To con-
struct TDAG using global inference, they experiment with different strategies
like Greedy Inference in Natural Reading Order, Greedy Best-first Inference
and Exact Inference with Integer Linear Programming (ILP). They find ILP to
perform the best. Following Bramsem et al. (2006), Chambers and Jurafsky
(2008) (CJ08) also use Integer Linear Programming (ILP) to handle the global
inference, and report 3% improvement on TimeBank corpus for temporal or-
dering between events. Bramsen et al. use three temporal relations: forward,
backward, and null or not connected, which are equivalent to before, after, and
vague. On the other hand, Chambers and Jurafsky use only two temporal
relations, before and after, instead of using either TimeBank(PHS'03)’s 13
temporal relations (derived from Allen (1983) (All83)), or TempEval’s coarse
grained relations: before, after, overlap, before-or-overlap, overlap-or-after and

vague.
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On the other hand, The system developed by Yoshikawa et al. (2009)
(YRAMO9) applies ILP in TempEval 2007 data-set and it outperforms all the
TempEval 2007 participants. Its implementation is based on Markov Logic
Network, but the main focus is to approach all three problems together instead
of handling them in isolation. If all the tasks are approached simultaneously
then the inference of one task can be benefited by the inference of another
task. They use ILP as a base solver in their Markov Logic Network (MLN)

framework.

3.3 Evaluating Temporal Information

The evaluation of temporal information can be divided into entity evaluation
(to evaluate events and temporal expressions) and relation evaluation. In
this section, we describe the existing evaluation metrics used to evaluate the

temporal annotations.

3.3.1 Evaluating Entity Extraction

To evaluate temporal entities (events and temporal expressions), we need to

evaluate:

e How many entities are correctly identified.
e [f the extents for the entities are correctly identified.

e How many entity attributes are correctly identified.

Traditionally, Information Retrieval (IR) evaluation metric — precision, re-

call and F' score — are used, to consider the above mentioned properties. The
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evaluation is straightforward for a single-word entity event. However, for multi-
word entity temporal expressions (timez), the evaluation is carried out in two

different ways: (i) entity-based evaluation, and (ii) token-based evaluation.

Equations 3.1 and 3.2 explain the entity-based evaluation.

|S YSentity N Ref. entity|

Precision =
|Sysentity|

(3.1)

‘Sysentity N Refentity|
|R€f entity |

where, Sysentity contains the entities extracted by the system that we want

Recall = (3.2)

to evaluate, and Ref.nir, contains the entities from the reference annotation

that are being compared.

Two methodologies are explored in the entity based evaluation: relaxed
(partial) and strict (exact) matching. In strict matching two strings match
completely, e.g. matching “last five days” against “last five days”. On the
other hand, in relaxed matching there is a partial overlap between two strings,

e.g. matching “last five days” against “five days”.

Next we explain the token-based evaluation with equations 3.3 and 3.4.

. tp
Precision = 3.3
tp+ fp (3.3)
lp
Recall = ———— 3.4
ot tp+ fn (3:4)

where, tp is the number of tokens that are part of an extent in both reference
and system; fp is the number of tokens that are part of an extent in the system
but not in the reference; and fn is the number of tokens that are part of an

extent in the reference but not in the system.
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The following example illustrates the differences between two evaluation

techniques:

Consider a document containing only three temporal expressions, “the be-
ginning of October 1999”7, “2005” and “yesterday”. Imagine that two sys-
tems automatically extract temporal expressions. Their correct extractions

are shown as 1 and their missing extractions are as 0 in Table 3.8.

timex annotationl  annotation?
the 0 0
beginning 1 0
of 1 0
October 1 1
1999 1 1
2005 1 1
yesterday 0 1

Table 3.8: Example extraction for two systems

Performances for these two annotations are shown in Table 3.9. The entity-
based score provides a better idea of the number of timezes recognized, while
the token-based score focuses on the number of tokens and does not consider

if a system is missing tokens or entire entities.

annotations token-based entity-based

annotationl score | 5/7 tokens | 2/3 entities (relaxed match)

annotation2 score || 4/7 tokens | 3/3 entities (relaxed match)

Table 3.9: Comparing Entity-based vs Token-based evaluation

Both entity-based and token-based evaluations have been used in the lit-

erature. TempEval 2010 (VSCP10) evaluates participants using the token-
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based evaluation, whereas, Boguraev and Ando (2005) (BAO05), Kolomiyets
and Moens (2009) (KMO09), and UzZaman and Allen (2011) (UA11) evaluate
their systems using the entity-based evaluation. TempEval organizers have
updated their evaluation metric for TempEval 3 to consider the entity-based

evaluation.

In TempEval-2 (VSCP10), the attribute performance is reported as at-
tribute accuracy — calculated as the matching attributes out of the matching
reference and system entities (equation 3.5).

Attribute Accuracy

_ |{V‘T | YIS (Sysentity N Refentity) A Sysattribute(x) - Refattribute(x)H
|S YSentity Ref entity|

(3.5)

If one annotation has only one matching entity and gets the attribute for
that entity correct, then it gets 100% accuracy; similarly, if another annotation
has all the matching entities and gets the attributes for all of them correct,
then it also gets 100% accuracy. This makes the attribute performances in-

comparable.

In order to make the comparison easier, another approach (BM06), (UA11)
considers the attribute recall — calculated as the number of matching attributes
and entities out of the total reference entities (equation 3.6), and attribute
precision — calculated as the number of matching attributes and entities out
of the total system entities (equation 3.7). Attribute recall is equivalent to
the multiplication of entity recall and attribute accuracy (multiply equation
3.2 and equation 3.5 to get equation 3.6). Similarly, attribute precision is

equivalent to the multiplication of entity precision and attribute accuracy.
Attribute Recall

_ ’{V.’L‘ | S (Sysentity N Refentity) A Sysattribute<w) - Refattribute(x)H
|R6fentity|

(3.6)
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Attribute Precision

_ ’{Vl’ | VS (Sysentity N Refentity) A Sysattribute(x> == Refattribute(x)H
‘Sysentity‘

(3.7)

Attribute F-score is generally used (BM06), (UA11) to evaluate entity at-
tributes. However, Attribute recall can also be used alone to evaluate the
attribute performance (LUA12). This makes a better evaluation, since it does

not penalize for attribute precision®.

3.3.2 Evaluating Temporal Relations

Temporal relation evaluation has two components: identification of a pair
of entities that has a temporal relation, and classification of the temporal
relation for a pair of entities. Previous TempEval shared tasks (VGST07),
(VSCP10) ignored the task of identification and assumed the pair of entities.

The participants’ task was to classify the temporal relations.

The current relation evaluation metric compares the system relations
against the reference relations to evaluate the temporal relation classification.

The standard precision and recall definitions are used to evaluate the systems

(VGST07), (VSCP10).

|Sy3relation N Refrelation|
| Sysrelation |

(3.8)

Relation Precision =

‘Sysrelation N Refrelation’
|R6frelation |

Relation Recall = (3.9)

10Tf some system extracts many wrong entities, then in attribute precision, the system gets
penalized for that. These systems are already getting penalized in the entity precision, hence
to evaluate how a system can extract an entity attribute, we want to judge the attributes’

performance only, instead of penalizing for entity precision.
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where, SYS,eiation contains the relations identified by the system that we
want to evaluate, and Ref,cation contains the relations from the reference

annotation that we are comparing against.

Since the pair of entities are assumed, the only task is to classify the tem-
poral relation between the entities of that pair. As a result, the precision and
recall are the same in both cases and it is more appropriate to call it accuracy.
However, a few participants (XRCE-T (HT07) and TRIOS/TRIPS (UA10))
extracts the entities and their attributes from raw text, and then classifies the
relations for the entities they extract. In these cases, precision and recall are as
per the definition (equation 3.8, 3.9), and give a better idea of the automated
systems performing the task from raw text. Other teams, on the other hand,

consider corpus entities.

None of the systems identify the pair of entities needed to classify the
relation. TempEval 2013, on the other hand, requires the automated systems

to additionally do the task of identifying the pair of entities.

According to TimeML (PCI*03) full-set relations, the temporal relation
between two entities can be: before, immediately before, includes, begins, ends,
and their inverses and simultaneous. On the other hand, according to Tem-
pEval shared tasks (VGS*07), (VSCP10), the relation can be: before, after,
overlap, before-or-overlap, overlap-or-after and vague. Besides exact match-
ing, relaxed matching is also considered when considering the coarse-grained
relations of TempEval. Precision and recall for relaxed matching are defined

as:

Relaxed Precision = Reorrect® (3.10)
Rsys
Relazed Recall = Reorreat (3.11)

Rref
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where, Reorrectw reflects the weighted number of correct answers, R,,s indi-
cates the total number of answers in the system annotation, and R,.; indicates
the total number of answers in the reference annotation. In the weighted scor-
ing, a response is not simply counted as 1 (correct) or 0 (incorrect), but it is

assigned a specific value as shown in Table 3.10.

before overlap after before-or-overlap overlap-or-after wvague
before 1 0 0 0.5 0 0.33
overlap 0 1 0 0.5 0.5 0.33
after 0 0 1 0 0.5 0.33
before-or-overlap 0.5 0.5 0 1 0.5 0.67
overlap-or-after 0 0.5 0.5 0.5 1 0.67
vague 0.33 0.33 0.33 0.67 0.67 1

Table 3.10: Relation Evaluation weights

Our implemented system is a corpus-based system. As a result, the con-

cepts discussed in this chapter are used extensively in our proposed systems

(Chapter 4).

3.4 Summary

We describe the existing computational linguistics approaches for temporal
information understanding. We start the chapter by citing some benefits of
corpus linguistics (MW96). In the first part of the chapter, we briefly describe
the annotation schemes for event, temporal expressions and temporal relations,

mostly in terms of TimeML (PCI*03).

Next, we summarize the existing approaches for the extraction tasks. We
find that the top-performing systems are approached in both rule-based and

data-driven way for event extraction. The performance depends mainly on
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how much linguistic information is being used by the systems. Similarly, for
temporal expression extraction and temporal relation classification, both rule-

based and data-driven approaches achieve top performances.

As suggested by TempEval shared tasks (VGST07), (VSCP10), temporal
relation classification was evaluated mostly in coarse-grained relations: before,
after, overlap, before-or-overlap, overlap-or-after and vague, instead of using
a full-set of TimeML relations. The existing systems also did not identify
which pair of entities to consider for temporal relations. They assumed the
pair of entities from the human annotated corpus, and then classified the
temporal relations. However, in the upcoming temporal evaluation shared
task — TempEval 2013, the participants first need to identify the pair of entities
which has a temporal relation, and then need to classify the temporal relation

into one of the TimeML relations!!.

We conclude the chapter by discussing the existing evaluation metrics for

temporal information extraction tasks.

Wpefore, immediately before, includes, begins, ends and their inverses, and simultaneous.
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4 Temporal Information

Extraction

In this chapter, we describe our approach for temporal information process-
ing, which includes extracting events (TimeML EVENT tag), temporal ex-
pressions (TimeML TIMEX) and identifying temporal relations (TimeML
TLINK tag). Our approach for all the tasks is best described as a hybrid be-
tween linguistically motivated solutions and machine learning classi-
fiers. We perform deep semantic parsing and use hand-coded rules to extract
events, features and temporal expressions from the logical forms produced
by the semantic parser. In parallel, we filter events, extract event features,
temporal expressions, and classify temporal relations using machine-learning

classifiers.

This chapter is structured as follows: the first section demonstrates the
general architecture and the flowchart of our approaches. The second section
describes our system modules. The following sections discuss our approach
for automatically extracting events, temporal expressions, identifying temporal

relations and building an end-to-end system from raw text.
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4.1 The General Architecture

We propose two systems — TRIOS and TRIPS — for automatically extracting
temporal information from text. TRIOS is a hybrid system and TRIPS’s
event extraction module is primarily rule-based. Figure 4.1 illustrates the

architecture of TRIOS system showing its different components.

TimeML

Raw text
annotated data
Training process TRIOS

Preprocessing

v

TimeML data annotated
with morphosynctactic &
semantic features

y

TRIOS

Temp Rel.

Model

Trained Models

Semantic
Parser

Preprocessing

v

Raw text annotated with
morphosynctactic &
semantic features

y Vv y

TRIOS TRIOS TRIOS
Timex Event Temp Rel.
Model Model Model

—

TimeML
annotated data

Figure 4.1: TRIOS architecture

Since TRIOS is a hybrid system with data-driven modules, it consists of

two processes: the training process and the application process.

In both processes, the first step is the preprocessing of the input, where we

obtain the morphosyntactic features and semantic features (lexical semantics
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and sentence-level semantic features). Our semantic parser (section 4.2.1)
primarily produces these features. We also have other classifiers to get event
attributes for TRIOS system. Our detailed flowchart for both TRIOS and
TRIPS systems is shown in Figure 4.2. TRIPS system output is color coded
to blue; TRIOS system output is color coded to red; and the common output

(shared by both TRIPS and TRIOS systems) is color coded to purple.

‘ Raw Text ‘

-7-’
Semantic MLN event

Parser feature extractor

Rule-based . MLN event

event extractor extractor

CRF timex
extractor
-
Rule-based
timex normalizer

TRI[OP
TRI(OP]S ti'[&x]s
'l WIS attributes

MLN temp rel MLN temp rel
identifier identifier

Figure 4.2: TRIOS/TRIPS flowchart
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4.2 System Modules

In this section we briefly describe our system modules, and in the next sections

we discuss how these modules are used in solving different subtasks.

4.2.1 TRIPS Semantic Parser

We use the existing TRIPS semantic parser (Allen et al., 2008) (ASBO08) to
produce deep logical forms from text. The system is generic and no grammat-
ical rules or lexical entries were added specifically for this task. The TRIPS
grammar is lexicalized context-free grammar, augmented with feature struc-
tures and feature unification. The grammar is motivated from X-bar theory,
and draws on principles from GPSG (e.g., head and foot features) and HPSG.
The parser uses a packed-forest chart representation and builds constituents
bottom-up using a best-first search strategy similar to A*, based on rule and
lexical weights and the influences of the statistical preprocessing. The search
terminates when a pre-specified number of spanning constituents have been
found or a pre-specified maximum chart size is reached. The chart is then
searched using a dynamic programming algorithm to find the least cost se-

quence of logical forms according to a cost table that can be varied by genre.

The TRIPS system here uses a wide range of statistically driven preprocess-
ing, including part of speech tagging, constituent bracketing, interpretation of
unknown words using WordNet, and named-entity recognition (Allen et al.,
2008) (ASBO08). All these are generic off-the-shelf resources that extend and
help guide the deep parsing process.

The TRIPS LF (logical form) ontology is designed to be linguistically moti-
vated and domain independent. The semantic types and selectional restrictions
are driven by linguistic considerations rather than requirements from reasoning

components in the system (Dzikovska et al., 2003 (DAS03)). As much as pos-
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sible the semantic types in the LF ontology are compatible with types found
in FrameNet (Johnson and Fillmore, 2000 (JF00)). FrameNet generally pro-
vides a good level of abstraction for applications since the frames are derived
from corpus examples and can be reliably distinguished by human annotators.
However, TRIPS parser uses a smaller, more general set of semantic roles for
linking the syntactic and semantic arguments rather than FrameNet’s exten-
sive set of specialized frame elements. The LF ontology defines approximately
3000 semantic types and 30 semantic roles. The TRIPS parser will produce

LF representations in terms of this linguistically motivated ontology®.

As an example, the result of parsing the sentence, He fought in the war, is
expressed below as a set of expressions in an unscoped logical formalism with

reified events and semantic roles.

(4.1). (SPEECHACT V1 SA-TELL :CONTENT V2)
(F V2 (:* FIGHTING FIGHT) :AGENT V3 :MODS (V4) :TMA ((TENSE
PAST)))
(PRO V3 (:* PERSON HE) :CONTEXT-REL HE)
(F V4 (:x SITUATED-IN IN) :0F V2 :VAL V5)
(THE V5 (:* ACTION WAR))

The main event (V2) is of ontology type fighting, which is a subclass of
intentional-action, and which corresponds to the first WordNet sense of fight,
and includes verbs such as fight, defend, contend and struggle. The agent role
of this event is the referent of the pronoun he, and the event is SITUATED-IN
an event described by the word war. For words which are not in the TRIPS

core lexicon, the system looks up the WordNet senses and maps them to the

ITRIPS ontology browser: http://www.cs.rochester.edu/research/trips/lexicon/

browse-ont-lex.html
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TRIPS ontology. For example, the word war is not in the core lexicon, and via

WordNet it is classified into the TRIPS ontology as the abstract type action.

4.2.2 Markov Logic Networks (MLN)

Next we use a statistical relational learning (SRL) framework that recently
gained momentum as a platform for global learning and inference in Al It
is Markov Logic (Richardson and Domingos, 2006 (RD06)). Markov logic is
a combination of first order logic and Markov networks. It can be seen as a
formalism that extends first-order logic to allow formulae to be violated with

some penalty.

Formally, an MLN is a set of weighted first-order formulae. Given a set of
constants, an MLN can be instantiated into a ground Markov network where
each node is an atom. Each formula represents a feature in the grounded
Markov network with the corresponding weight. The probability of an assign-

ment x is

1
P(r) = Zeaspzi wini(?) (4.1)

where Z is the normalization constant, w; is the weight of the i"* formula
and n;(x) is the number of satisfied groundings for the i** formula. MLN is
a flexible way to incorporate human knowledge, since they allow using differ-
ent combinations of features in a straight-forward manner by setting different

formula templates and then learning the weights from the training data.

For our different classification tasks, we used different classifiers based on
MLNs. We used an off-the-shelf MLN classifier Markov thebeast?, using Cut-
ting Plane Inference (Riedel, 2008) (Seb08) with an Integer Linear Program-

ming (ILP) solver for inference.

2Markov thebeast is available online at: http://code.google.com/p/thebeast/
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To use thebeast or any other MLN framework, at first we have to write the
formulas, which corresponds to defining features for other machine learning
algorithms. The Markov network then learns the weights for these formulas
from the training corpus and uses these weights for inference in the testing

phase.

An easy example below gives a brief idea about these weights. To classify
the event feature class, we have a formula that captures the influence of both
tense and aspect together. Here are two examples that show the learned

weights for the formulas from training data3.

tense(el, INFINITIVE) & aspect(el, NONE)
=> class(el, OCCURRENCE) weight = 0.32

tense(el, PRESPART) & aspect(el, NONE)
=> class(el, REPORTING) weight = -0.27

The MLN then uses these weights to reason about class. Generally, a more
positive weight indicates that the formula is likely to hold. If the weight is

negative then the formula most likely does not hold.

3There are many examples in our training data for tense INFINITIVE and aspect NONE
together, which lead to the event class OCCURRENCE, e.g. Wong Kwan will be lucky
to break even. It is nmot going to change for a couple of years. Hence, tense(el,
INFINITIVE) & aspect(el, NONE) => class(el, OCCURRENCE) formula has a higher
positive weight. On the other hand, our training data does not include instances of tense
PRESPART and aspect NONE together leading to the event class REPORTING, hence
the formula tense(el, PRESPART) & aspect(el, NONE) => class(el, REPORTING) has
a negative weight, i.e. it is very unlikely to happen. One instance of tense PRESPART
and aspect NONE from our training data is — Initially, the company said it will close its
commercial real-estate lending division, and stop originating new leases at its commercial
lease subsidiary. In these examples, the example events for which we are showing the tense,

aspect and class, are shown in bold. PRESPART means present participle.
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Finding useful features for MLNs is the same as finding them in any other
machine learning algorithms. However, the MLN framework gives the oppor-
tunity to combine different features in the first order logic, which can lead
to a better inference. For example, when filtering events, we have formulas
that combine word and pos, or word and previous word, or pos and next pos,
where we can capture the relationship between two predicates. Many of these
predicates (features) could be encoded in other classifiers by concatenating the
features. However, the increasing size a formula complicates matters. As a
result, we have to regenerate the whole classifier data every time we introduce

a new relationship.

4.3 The Event Extraction

For event extraction, we parse the raw text with the TRIPS parser. Then
we take the resulting Logical Form (LF) and apply around hundred of hand-
coded extraction patterns to extract events and features, by matching semantic
patterns of phrases. These hand-coded rules are devised by checking the parse
output in our development set. It was 2-3 weeks of work to come up with most
of the extraction rules that extracts the events. There were minor incremental
improvements in rules afterwards. It is worth mentioning, these rules are very
generic and can be used in a new domain without any extra work, because, the
TRIPS parser and ontology are domain independent, and use mappings from
WordNet to interpret unknown words. Hence, the extraction rules will apply

(and can be tested) for any natural language text without any extra work.

Because of the ontology, we can usually express general rules that cap-
ture a wide range of phenomena. For instance, all noun-phrases describing
objects that fall under the TRIPS Ontology’s top-level type situation-root are

extracted as described events. This situation is captured by the extraction
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rule:

((THE ?x (? type SITUATION-ROOT))
—extract-noms>
(EVENT ?7x (7 type SITUATION-ROOT) :pos NOUN
:class OCCURRENCE ))

By applying this formula in example (4.1), we can extract “war” as a
nominal event, since “war” has the type action, which falls under situation-
root in TRIPS ontology, this extraction rule will match the LF (THE V5 (:*
ACTION WAR)) and will extract war as event. Beside matching war under
situation-root in ontology, it also matches the specifier the, which indicates

that it is a definite noun phrase.

The result of matching around hundred of such rules to example (4.1)

sentence 1is:

<EVENT eid=V2 word=FIGHT pos=VERBAL ont-type=FIGHTING
tense=PAST class=0CCURRENCE voice=ACTIVE aspect=NONE
polarity=POSITIVE nf-morph=NONE>

<RLINK eventInstanceID=V2 ref-word=HE ref-ont-type=PERSON
relType=AGENT>

<SLINK signal=IN eventInstanceID=V2 subordinatedEventInstance=V5
relType=SITUATED-IN>

<EVENT ei1d=V5 word=WAR pos=NOUN ont-type=ACTION class= OCCURRENCE

voice=ACTIVE polarity=POSITIVE aspect=NONE tense=NONE>

In this way, we extract events and TimeML-suggested event features (class,
tense, aspect, pos, polarity, modality) for our TRIPS system. We also extract
a few additional features such as ontology type (ont-type). TimeML tries to
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capture event information by a high-level attribute class or pos. The ontol-
ogy type feature captures more fine-grained information about the event, but
still much higher level than the words. The extraction rules also map our
fine-grained types to the coarse-grained TimeML event class. We also extract
relations between events (SLINK), whenever one event syntactically dominates
the other, so it extracts more than TimeML’s SLINKs and another new rela-
tion, relation between event and its arguments (RLINK). Details about these

new additions can be found in section 7.1.

The TRIPS system extracts events in the temporally annotated corpus
(TimeBank (PHST03), TempEval 1 (VGST07) or TempEval 2 (VSCP10)) with
high recall. However, this high recall comes with the expense of precision. The
reasons for lower precision include, (i) the fact that generic events are not coded
as events in the corpus, (ii) errors in parsing and, (iii) legitimate events found
by the parser but missed by corpus annotators. To remedy this problem, we
introduced a MLN based filtering classifier, using the event features extracted
from the TRIPS parser. The formulas in MLN for filtering were derived by
linguistic intuition and by checking the errors in our development set. We

devised around 30 MLN formulas.

There were two goals for this filtering step: (1) Eliminating events that
result from errors in the parse, and (2) Removing event-classes, such as gener-
ics, that were not coded in the corpus. The second goal is needed to perform
a meaningful evaluation on the existing temporally annotated corpus. The
resulting system, including parsing, extraction, and post-filtering, is named as

TRIOS system.

The TRIPS parser and extraction rules already give us event features along
with events, which is reported in the results as the TRIPS system. To im-
prove the performance, we implemented a MLN classifiers (TRIOS system)

for the class, tense, aspect and pos features, using the features generated from
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the TRIPS parser plus lexical and syntactical features generated from the
text using the Stanford POS tagger*. TRIOS system reports the polarity and
modality performance of TRIPS system. The Table 4.1 gives a summary of

features used to classify these event features.

Event attribute | Common features Additional features
Pos Event word, event none
Tense penn tag, verb word | pos, polarity, modality,

sequence , verb pos | voice (active or passive)

Aspect sequence, previous pos, polarity, modality, voice,
word of verb pos—+previous-pos, pos+next-pos

Class sequence, next TRIPS class suggestion, ont-type, slink-core-rel ,
word, next pos tense+aspect, pos, stem, contains dollar

?One Penn tag derived features is verb word sequence, which captures all previous verbs, or TO
(infinitive), or modal verbs, of the event word. That is, it will capture all consecutive verbs before the

event until we get non-verbal word. Similarly verb pos sequence is the penn tag sequence of these verbs.

Table 4.1: Attributes/features used for classifying event features pos, tense,

aspect and class

4.3.1 Evaluation and Discussion

Event Extraction: As mentioned earlier, the TimeBank corpus (Pustejuvsky
et al., 2003 (PHS™03)) is annotated according to TimeML (PCIT03) specifica-
tion. Later in TempEval (Temporal Evaluation shared task) (Verhagen et al.,
2007 (VGS™07)), the same corpus was released with modified event relations
and minor modifications on some event features. Before describing our results
and comparing with others, it is important to more carefully define the notion

of event according to the TimeML specification.

4http://nlp.stanford.edu/software/tagger.shtml
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TimeML considers events to be a cover term for situations that happen or
occur. Events can be punctual or last for a period of time. They consider pred-
icates describing states or circumstances in which something obtains or holds
true. Events are generally expressed by means of tensed or untensed verbs,
nominalizations, adjective, predicative clauses, or prepositional phrases. In
addition, the TimeML specification says not to tag generic interpretations,
even though capturing them could be of use in question answering. By gener-
ics, they mean events that are not positioned in time or in relation to other
temporally located events in the document. For example, they won’t annotate

use and travel in the sentence: Use of corporate jets for political travel is legal.

In addition, subordinate verbs that express events which are clearly tem-
porally located, but whose complements are generics, are not tagged, For ex-
ample, He said participants are prohibited from mocking one another. Even
though the verb said is temporally located, it isn’t tagged because its comple-

ment, participants are prohibited from mocking one another, is generic.

And finally, event nominalization that do not provide any extra information

than the supplied verb are also not tagged.

As for event attributes, TimeML considers class, tense, aspect, and nf-
morph (Non-finite morphology). TimeBank contains 183 newswire docu-
ments. Later in the TempEval-1 (VGST07) contest, they use the same doc-
uments of TimeBank with some modification. One modification being re-
moving the nf-morph attribute and introducing pos tag (part of speech) with
VERB, ADJECTIVE, NOUN, PREPOSITION, OTHER. They modified the
tense with PRESENT, NONE, PAST, FUTURE, INFINITIVE, PRESPART,
PASTPART, to include rest of the values of nf-morph.

All our initial experiments are on TempEval-1 corpus and we also pro-
vide evaluation on TempEval-2. As a result, none of the existing systems

contain performance of pos tag and our performance of the tense feature is
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also not comparable with other systems. However, for our rest of the experi-
ments TimeBank and TempEval-1 corpus are same, so we will loosely refer to

TempEval-1 as TimeBank when comparing with other systems.

The TempEval-1 corpus is divided into a training set of 163 documents and
a test set of 20 documents. We used TempEval-1 test data as our development
set for event extraction, and report the average of 10 cross-fold validation

performance on the training data, which is totally unseen in our development.

System Precision Recall ~Fscore (P+R)/2

TRIPS avg  0.5863  0.8422 0.6914  0.7143
TRIOS avg  0.8327  0.7168 0.7704  0.7748
TAA N/A N/A  NJ/A 0.78

Table 4.2: Event Extraction Performance on TempEval Training data with 10

cross-fold validation (average)

Table 4.2 shows our performance on event extraction, where we also re-
port Inter-annotator agreement (IAA®). The TRIPS system is the system with
TRIPS parser and hand-coded extraction rules. We can see that TRIPS sys-
tem gets a very high recall but with the expense of precision. As mentioned
earlier, our errors result from tagging generic events and event that the Time-

Bank annotators missed, as well as true errors.

Bethard and Martin (2006) (BM06) (STEP system) had the prior state-of-
the-art performance on event extraction in TimeBank corpus. They evaluated

their system in 18 documents from TimeBank corpus and compared with other

baselines. The EVITA (Sauri et al., 2005) (SKVP05) also implemented the

®Inter-annotator agreement (IAA) on subset of 10 documents from TimeBank 1.2. Tem-
pEval annotation for EVENT and TIMEX3 were taken verbatim from TimeBank 1.2 (Ver-
hagen et al., 2007). IAA source: http://www.timeml.org/site/timebank/documentation-
1.2.html#iaa
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event extraction system on TimeBank corpus. However, their performance is
inflated due to the fact that some aspects of their system were trained and
tested on the same data. To get an idea of how well EVITA performs in an
unseen data, Bethard and Martin simulated the EVITA system, which they
called Sim-Evita. Another of their baselines is Memorize, which assigns to
each word the label with which it occurred most frequently in the training
data. To compare the performance of our systems, we tested in the STEP test

set® and all the performances are reported below in Table 4.3 7.

System Precision Recall Fscore (P+R)/2

TRIOS 0.8638 0.7074 0.7778 0.7856
TRIPS 0.5801  0.8513 0.6900  0.7157
STEP 0.82  0.706 0.7587  0.763
Sim-Evita  0.812  0.657  0.727  0.7345
Memorize ~ 0.806 0557  0.658  0.6815
TAA N/A N/A  NJ/A 0.78

Table 4.3: Event Extraction Performance on Bethard and Martin’s test data

Again our TRIPS system has the highest Recall, which is around 15%
higher than any other existing systems. But our TRIOS system outperforms
any other systems in both precision and recall in TimeBank. STEP’s recall is
closest and almost similar to us, but we gain in MLN filtering step and end up

with an overall higher precision. A 10-cross validation performance comparison

STheir testing documents are: APW19980219.0476, APW19980418.0210,
NYT19980206.0466, PRI19980303.2000.2550, €a980120.1830.0071, and the wsj-XXXX
documents numbered 0122, 0157, 0172, 0313, 0348, 0541, 0584, 0667, 0736, 0791, 0907,
0991 and 1033.

"Performances of STEP, Sim-Evita and Memorize is reported from Bethard and Martin

(2006) (BMO06)
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for all systems would have given a better evaluation, but information is not

available for the other systems.

We also participated in TempEval-2 (VSCP10) challenge. The TRIPS
system has the highest recall in TempEval-2 too, while TRIOS system is
second-best in precision with the highest scoring system, TIPSem. But overall
TIPSem does very well compared to our system on event extraction. Perfor-

mance of our both systems and the best performing TIPSem system is reported

in Table 4.4.

System Precision Recall Fscore
TRIOS 0.80 0.74 0.77
TRIPS 0.55 0.88 0.68

Best (TIPSem) 0.81 0.86  0.84

Table 4.4: Performance of Event Extraction (Task B) in TempEval-2

Event Extraction in New Domains: Our TRIPS system on event
extraction is based on the domain independent semantic parser (TRIPS parser)
and the domain independent extraction rules, hence porting to new domain
is no extra work. To see how well TRIPS system performs in a new domain,
we did an evaluation on two medical text documents (patient reports) with
146 events (human evaluated according to TimeML guideline (PCI*03)) and
found that TRIPS system performed similarly in a new domain as well. Our

comparison is shown in Table 4.5.

This performance is suggestive that TRIPS system will have equivalent
performance in new domains, but not conclusive, since it was tested in just
two documents with 146 events on medical texts. On the other hand, the better
TRIOS system is dependent on machine learning classifiers, which depends on

having a training corpus. So, we cannot get equivalent performance of TRIOS
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System Precision Recall Fscore

TRIPS in TempEval-2 0.55 0.88 0.68
TRIPS in Medical Text 0.60 0.83 0.70

Table 4.5: Performance of TRIPS system in new (medical) domain vs TRIPS

system in old (news) domain

system in new domains without the labeled training corpus.

Event Feature Extraction: Next, we discuss our performance on event
feature extraction. Bethard and Martin (2006) (BMO06) only report perfor-
mance for event feature class; however, they report identifying class and event
together in terms of precision and recall. This gives an idea of how accurately
these features are extracted (precision) and from raw text how many events
are extracted with correct class feature (recall). We compare these results

directly with the TRIOS results in Table 4.6.

System Precision Recall Fscore

STEP 0.667 0.512  0.579
TRIOS 0.780 0.551 0.650

Table 4.6: Event and Class Identification Performance on Bethard and Martin
(2006)’s test set

Our main gain over the STEP system is in precision, and we also do better
than them in recall. In addition to the general linguistically motivated features,
our extracted pos, tense, aspect and suggestions from TRIPS system are used
for identifying the class, which improves our performance. There are also two
other systems that report the performance of class identification on TimeBank.
They are EVITA (Sauri et al., 2005 (SKVP05)) and Chambers et al. (2007)
(CWJO0T7), but they evaluate the accuracy ratio, i.e. the percentage of values
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their system marked correct according to the gold standard. For identifying
class, EVITA assigns the class for the event that was most frequently assigned
to them in the TimeBank. As before, this evaluation is trained and tested
on the same document. With this technique they got an accuracy of 86.26%.
Chambers et al. (2007) also had their majority class baseline, which is same
as EVITA, except it does not train and test on the same document. The
majority class baseline performance is 54.21%, a better estimate of EVITA’s
performance on class identification. The remaining three features that we
extract are pos, temse and aspect. As mentioned in the beginning of this
section, our experiments are on TempEval-1 corpus, which has different tense
values than TimeBank, our performance on tense is not directly comparable.
TimeBank also did not have pos feature. However, the performance of aspect
can be compared with other systems. We are still reporting tense performance
of other systems and inter-annotator agreement in all cases. Along with the
accuracy (precision) numbers, we will also report the recall, which means what
percentage of instances we extracted the event and got these features right,
i.e. it is strictly dependent on event extraction’s accuracy and always lower
than that®. Our output is gathered from a 10-fold cross validation on the

TempEval-1 training data.

EVITA outperforms us, with very small margin, in identification of aspect
and tense, but it is important to recall that we are identifying both nf-morph
and tense in the tense feature. EVITA’s performance on nf-morph identifi-
cation is 89.95%. This means, both systems perform almost equally well in
this task. In pos, our performance is dependent on the third-party pos-tagger
software. However, a naive baseline method that generates the TimeBank pos
tags from tagger output has an accuracy of around 87%. Finally, in identifying

class, we do significantly better than any other existing systems.

8Check section 3.3.1 for detailed explanation of the evaluation metrics.
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System

Precision or Accuracy Recall

Feature | TRIOS 10cv

Chambers’07 10cv EVITA TAA | TRIOS 10cv

Class
Tense
Aspect
Pos

0.8025
0.9105
0.9732

0.9414

0.752 0.5421  0.77 |  0.5749
0.8828! 0.92051 0.93 |  0.6523
0.9424 0.9787 1 0.6973

N/A N/A 099 | 0.6743

Not directly comparable because their corpus had different values for tense

Table 4.7: Accuracy or Precision of Event Features and Recall of Event and

Event Feature extraction (TRIOS on 10 c¢v on TempEval training data)

On TempEval-2 event feature extraction, our MLN-based TRIOS system

has the best performance on aspect and polarity; we also do very well (second-

best performances mostly) on tense, class, pos and modality. Performance of

our systems’ (TRIPS system’s features are generated by TRIPS parser) event

feature extraction in TempEval-2, along with the best team’s performance is

reported in Table 4.8
System  TRIPS TRIOS Best
Class 0.67 0.77  0.79 (TIPSem)
Tense 0.67 0.91  0.92 (Edinburgh-LTG)
Aspect 0.97 0.98 0.98
Pos 0.88 0.96  0.97 (TIPSem, Edinburgh-LTG)
Polarity 0.99 0.99 0.99
Modality — 0.95 0.95  0.99 (Edinburgh-LTG)

Table 4.8: Performance of Event Features on TempEval-2 (Task B)
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4.3.2 Main event identification

The main event represents the most important event in the sentence. An
example will help to understand the main event better. For the sentence, “Also

today, King Hussein of Jordan arrived in Washington seeking to mediate the

Persian Gulf crisis.”, we have four events: arrived, seeking, mediate and crisis.
But arrived is the main event here. To build a temporally aware system, we
need to identify the temporal relations between main events of the consecutive

sentences.

We approach the problem of identifying the main events, given all the
events, as another classification problem. We take our extracted events from
the previous step and run a Markov Logic Network classifier? to classify the

main events of a sentence.

In one of the tasks for TempEval 2010 (VSCP10), main events were labeled.
We used that labeled data to train our main event classifier. As features, we
used lexical features (word, stem, next word, previous word, previous ver-
bal word sequence), morphosyntactic features (part-of-speech (pos) tag, tense,
voice, polarity, TimeML aspect, modality, pos sequence, previous verbal pos
sequence, next pos, previous pos), lexical semantic features (abstract semantic
class ontology type) and sentence-level semantic features (TimeML class, se-
mantic roles and their arguments) of the events. The syntactic and semantic
features are mostly generated from the TRIPS parser (details in section 4.2.1)

output and also using other classifiers.

The classifier first identifies the main events from the sentences. Then we
run another pass to ensure every sentence has at least one main event. We
force every sentence to have a main event. If a classifier did not identify a

main event in a sentence, then we consider the first verbal event as the main

9Check section 4.2.2 for Markov Logic Network
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event of the sentence. We show in the Evaluation that this model is a good
baseline and adding this back-off model improves the performance significantly
as well. We also show that with very naive features such as the lexical features,
the part-of-speech tag derived features and the back-off model, we can get a
high performing system, which performs better than a classifier trained on
the TimeML-defined event features. However, we get the best performance by

including the semantic features.

In the TempEval-2 data we have found that approximately 1.5% of the
sentences have more than one main event. This might not be a very significant
number, but these instances are important and significant in many domains.
They represent conjunctions or colon separated sentences. Our framework
handles these sentences because we do not have any constraint that there could
be at most one main event in a sentence. Our classifier considers semantic
information, semantic roles and other features. If any event has features related
to main events then the classifier will try to classify it as main event. As a
result, we handle the conjunctions and colon-separated sentences without any

extra work.

Evaluation: We trained our main event identification classifier on
TempEval-2 training data and tested it with 10-fold cross validation. We

have several baselines that we explain below.

1. First event baseline (FEB): Consider the first event of the sentence as

the main event

2. First verbal event baseline (FVB): Consider the first verbal event of the

sentence as the main event

3. Hybrid baseline (HYB): Consider the first verbal event as the main event;
if the verbal event does not exist in the sentence then consider the first

event as the main event
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4. Lexical and Penn tag features without verb word sequence related fea-
tures (LPV): Run the classifier with lexical features and penn tag, pre-

vious pos and next pos

5. Lexical and Penn POS tag features (LPF): Run the classifier with fea-

10

tures from 4-LPV + verb word sequence'”’, verb pos sequence, previous

word verb sequence, previous pos verb sequence

6. TimeML features generated by TRIOS (TFT): Run the classifier with
TimeML features generated by TRIOS: word, pos, class, tense, polarity,

aspect and modality

7. TimeML features taken from corpus (TFC): Run the classifier with
TimeML gold standard features: word, pos, class, tense, polarity, as-

pect and modality

8. All features (ALF): Run the classifier with all features — lexical, syntactic

and semantic features

At first we report the performance of all these baselines in Table 4.9 (first
three rows). The classifier based main event extractor does not force the con-
straint that each sentence should have a main event. Hence, after classification,
we run a back-off model with our hybrid baseline, i.e. if our classifier does not
find a main event for a sentence, then it considers the first verbal event as
main event and if there are no verbal events then considers the first event as
main event. We report the performance of our baselines with back-off hybrid

model in last three rows of Table 4.9. All the features used in the classifiers

0Verb word sequence captures all previous verbs, or TO (infinitive), or modal verbs, of
the event word. That is, it will capture all consecutive verbs before the event until we get

non-verbal word. Similarly verb pos sequence is the penn tag sequence of these verbs.
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are generated by our systems, except 7-TFC, where we used the corpus gold

standard features.

1-FEB 2-FVB 3-HYB 4-LPV 5-LPF 6-TFT 7-TFC 8-ALF

Precision 0.6169  0.6444 0.6485 0.6940 0.7421 0.7120 0.7020 0.7599
Recall ~ 0.4708 0.5423 0.5520 0.6516 0.7013 0.5983 0.5983 0.7299
Fscore  0.5340 0.5890 0.5964 0.6721 0.7211 0.6502 0.6460 0.7446

With Hybrid Backoff

Precision X X X 0.6802 0.7164 0.6877 0.6807 0.7315
Recall X X X 0.7900 0.8209 0.7534 0.7540 0.8340
Fscore X X X 0.7310 0.7651 0.7190 0.7155 0.7794

Table 4.9: Performance of main event identification and comparison between

baselines

We observed the following from the experimental results:

1. Our classifier with all features (lexical, syntactic and semantic) per-

formed best, which is 15-20% improvement over the naive baselines (1-

FEB, 2-FVB and 3-HYB).

2. Incorporating hybrid baseline (3-HYB) as back-off model improved per-

formance (3-6%) for all systems in the Fscore.

3. Just the lexical features and pos tag related features (5-LPF) can produce

a high performing main event extractor.

(a) 5-LPF performs 1-2% less than the best performing system with

semantic feature (9-ALF); however, if someone wants to extract

the main events without semantic computation then 5-LPF is a

very good option.



86

(b) 5-LPF performs better than the system with TimeML attributes
(class, tense, pos, aspect, modality, polarity), whether system gen-

erated (6-TFT) or from the gold standard (7-TFC).

(c) While just using the Penn tag derived features perform better than
using the TimeML features, the verb word sequence related features

made the difference. Comparison of 5-LPF and 4-LLPV shows that.

4.4 Temporal Expression Extraction

4.4.1 Recognizing Temporal Expression

The TRIPS parser extracts temporal expressions the same way as we extract
the events. The performance of the TRIPS parser’s temporal extraction does
not outperform state-of-the-art techniques on the evaluation measures. To
improve on this, we also use a traditional machine learning classifier straight
from the text. Our temporal expression extraction module is a hybrid between
traditional machine learning classifier and the TRIPS parser extractor!!. The
TRIPS parser extracts some temporal expressions that are missed by our CRF
based system and even sometimes missed by the TimeBank annotators. So we
implemented a system by making a hybrid between CRF based system and
TRIPS suggestion. The temporal expressions that are suggested by TRIPS
parser but are missed by CRF based system, are passed to a filtering step that
tries to extract a normalized value and type of the temporal expression. If we
can find a normalized value and type, we accept these temporal expressions

along with CRF based system’s extracted temporal expressions.

For the machine learning classifier, we used a token-by-token classification

for temporal expressions represented by B-I-O encoding with a set of lexical

"' The system reported for TempEval-2 only uses the CRF based classifier.



87

and syntactic features, using Conditional Random Field classifier'2.

We used lexical features like word, shape, is year, is date of week, is month,
1s number, is time, is day, is quarter, is punctuation, if belong to word-list
like init-list'® | follow-list**, etc. We then use CRF++ formulas in template
to capture relation between different features to extract the sequence. For
example, we will write a formula to capture the current word is in the init-list
and the next word is in the follow-list, this rule will train the model to capture

sequences like this weekend, earlier morning, several years, etc.

For TempEval-2, we did not make hybrid between CRF and TRIPS, but we
still merge TRIPS and CRF, because, the TRIPS parser does extract tempo-
ral relations between events and temporal expressions, which helps us in the
temporal relation identification tasks. So we take the temporal expressions
from the CRF based extractor and for the cases where TRIPS parser extracts
the temporal expression, we use TRIPS parser id, so that we can relate to

relations generated by the parser.

4.4.2 Determining The Normalized Value and Type of
temporal expression
Temporal expressions are most useful for later processing when a normalized

value and type is determined. We implemented a rule-based technique to

determine the type and value. We match regular expressions to identify the

12We used off the shelf CRF++ implementation. http://crfpp.sourceforge.net/

13init-list contains words like: this, mid, first, almost, last, next, early, recent, earlier,

beginning, nearly, few, following, several, around, the, less, than, more, no, of, each, late.

M follow-list contains words like: century, centuries, day, days, era, hour, hours, mil-
lisecond, minute, minutes, moment, month, months, night, nights, sec, second, time, week,
weeks, year, years, am, pm, weekend, summer, fall, winter, fiscal, morning, evening, after-

noon, noon, EST, GMT, PST, CST, ago, half.
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type of temporal expressions. Type could be either of time, date, duration and

set.

Then in the next step we extract the normalized value of temporal expres-
sion, as suggested by TimeML scheme. We take the Document Creation Time
(DCT) and then calculate the values for different dates in terms of document

creation date, e.g. last month, Sunday, today. The type instances are trivial.

Our type and value extractor and temporal expression extractor modules

are available! for public use.

4.4.3 FEvaluation and Discussion

Recognizing Temporal Expressions: Our first evaluations are on
TempEval-1 or TimeBank corpus and we compared our system against the
systems that were developed before TempEval-2. Similar to event extraction,
we used 10-fold cross validation on the TempEval corpus’ training data to eval-
uate the performance of our system. Boguraev and Ando (BA-2005) (BA05),
and Kolomiyets and Moens (KM-2009) (KM09) also report their performances
on TimeBank. Tables 4.10 and 4.11'6 show the comparison between the exist-

ing systems and our two systems.

We can see that in the relaxed match we outperform existing systems
before TempEval-2 and in strict match we do equally well with the best state-
of-the-art system. However, our CRF with TRIPS system’s performance did
not outperform the CRF-alone system. To investigate, we hand-checked some
of the suggestions of the TRIPS-based system on TempEval test set. We

found that there are legitimate temporal expressions that were missed by the

Details in Appendix A.

16Relaxed match admits recognition as long as there are any common words. Sloppy
span admits recognition as long as right boundary is same in the corresponding TimeBank

in-stance. Strict match admits recognition when both strings are strictly matched.
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System Precision Recall Fscore
KM-2009 0.872 0.836  0.852
BA-2005 0.852 0.952  0.896
CRF+TRIPS  0.8979  0.8951 0.8951
CRF 0.9541  0.8645 0.9075

Table 4.10: Temporal expression relaxed match extraction on TimeBank (BA-

2005 uses sloppy span)

System Precision Recall Fscore
KM-2009 0.866 0.796  0.828
BA-2005 0.766 0.861 0.817
CRF+TRIPS  0.8064 0.8038 0.8051
CRF 0.8649  0.7846 0.8228

Table 4.11: Temporal expression extraction strict match performance on Time-

Bank
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TimeBank annotators. If we include those temporal expressions, then our
TRIPS-based system outperforms any existing systems, including our CRF-
based system. This experiment was conducted on only the TempEval test set.

It is reported in the table 4.12 below.

System Precision  Recall
CRF 0.8242  0.9069
CRF+TRIPS 0.8195  0.8990
CRF+TRIPS 0.8501 0.9296

hand-verification

Table 4.12: Improvement of TRIPS+CRF based system over CRF based sys-

tem show on TempEval-1 test set

We have shown that the CRF-based system with our selected lexical and
grammatical features outperforms or does equally well with the existing sys-
tems. In addition, our TRIPS-based system performs the best when omissions
from the Timebank corpus are taken into account. The result of TRIPS based
system is suggestive, but not conclusive. We prefer to use this system in our
future work on identifying temporal relations because TRIPS based system is

backed by a domain independent semantic parser.

Determining Normalized Value and Type of temporal expres-
sions: Most previous work on temporal expression extraction on the Time-
Bank corpus (Boguraev and Ando, 2005 and Kolomiyets and Moens, 2009)
focused on just recognizing temporal expressions. Boguraev and Ando also
report their performance on identifying type. We will show the comparison
with Boguraev and Ando (BA-2005) on identifying type. Previous work before

TempEval-2 did not report results on computing normalized values.

We considered the temporal expressions that are matched with the relaxed
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match and for these instances we checked the number of cases we identified
the type and value accurately. Our 10-fold cross validation performance for
both of our systems and performance of BA-2005 on Time-Bank is reported

in Table 4.13, which shows we outperform Boguraev and Ando (2005).

System type accuracy value accuracy
CRF+TRIPS 0.906 0.7576
CRF 0.9037 0.7594
BA-2005 0.815 N/A

Table 4.13: Performance of type and value identification on TempEval for

recognized (relaxed) temporal expressions

TempEval-2: On TempEval-2 (VSCP10), both the TRIPS and TRIOS
systems used the same CRF based approach and we did not make any hybrid
with TRIPS parser extraction. Our system attained the second best perfor-
mance on combined temporal expression extraction and normalization task
(identifying type and wvalue). It is worth mentioning that the average of iden-
tifying value performance is 0.61 and if we remove our systems and the best
system, HeidelTime-1, the average is only 0.56. Hence, our freely distributed
normalization tool could be beneficial to many people. Performance of our

system and the best system on task A is reported in Table 4.14.

4.5 Temporal Relation Identification

We identify the temporal relations using a Markov Logic Network classifier,
namely thebeast, by using linguistically motivated features that we extracted
in previous steps. Our work matches closely with the work of Yoshikawa et

al. (2009) (YRAMO09). We only consider the local classifiers, but we use more
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TRIPS Best
TRIOS HeidelTime-1

Temp Exp Precision  0.85 0.90
extraction Recall 0.85 0.82
F'score 0.85 0.86
Normalization type 0.94 0.96
value 0.76 0.85

Table 4.14: Performance on Temporal Expression extraction (Task A)

linguistically motivated features and features generated from text, whereas
they use TempEval-1’s (Verhagen et al., 2007 (VGST07)) annotations as input,

along with their derived features.

TempEval-1 (VGS'07) has three tasks on identifying temporal relations
and TempEval-2 (VSCP10) has four tasks, which includes all TempEval-1’s
tasks and an additional task. We will describe our system and report our per-
formance in terms of these tasks to compare our system with other competing

systems.

The four subtasks for identifying temporal relations in TempEval-1 (TE1)
and TempEval-2 (TE2) are (numbered according to both TempEval-1 and
TempEval-2):

(TE1 A or TE2 C) Determine the temporal relation between an event and
temporal expression in the same sentence;

(TE1 B or TE2 D) Determine the temporal relation between an event and the
document creation time (DCT);

(TE1 C or TE2 E) Determine the temporal relation between the main events
in two adjacent sentences; and

(TE2 F) Determine the temporal relation between two events, where one event
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syntactically dominates the other event.

The Table 4.15 shows the features we used for each of these tasks. We used
some features that we extracted from the TRIPS parser. Related information

about these concepts can be found in UzZaman and Allen (2010) and also in

later section 7.1 (TRIOS-TimeBank).

4.5.1 Evaluation and Discussion

In this section, we evaluate our system initially on TempEval-1 (VGS*07) data
and compare our system with the systems reported before TempEval-2. Next,

we evaluate on TempEval-2 data comparing with the TempEval-2 participants.

As mentioned already, TempEval-1 contains the same documents as Time-
Bank. They divided the TimeBank into 163 documents for TempEval training
data and 20 documents for TempEval-1 test data. They modified the temporal

relation values in TempEval-1 and made it simpler.

In event and temporal expression extraction, we used the TempEval-1 test
set as our development set and report the performance using 10-fold cross
validation on TempEval-1 training set. In case of temporal relation identifica-
tion, we do not actually use the TempEval-1 test set as our development set.
But our extracted features were part of development set, so we report 10-fold
cross validation on TempEval-1 training data as well to better understand the
capability of our system. We also report the performance on TempEval-1 test

data to compare with other systems.

Most of the systems in the TempEval-1 task used the features, events, and
temporal expressions provided in the TempEval-1 corpus as input. In con-
trast, we extracted all the events, temporal expression and features from raw
text and used our extracted information to identify the temporal relations.

Two systems, LCC-TE (Min et al., 2007 (MSF07)) and XRCE-T (Hagege
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Features TE2C TE2D TE2E TE2F
TE1 A TE1B TE1C

FEvent Class YES YES e xes e xept
FEvent Tense YES YES e1xes e1xe
Event Aspect YES YES e;xes e Xe
Event Polarity YES YES e xey e xe
FEvent Stem YES YES e xes e1xe
Event Word YES YES YES YES
FEvent Constituent ® YES e;xes e Xe
Event Ont-type © YES YES e1xes e1xe
Event LexAspect ¢ © Tense YES YES e1xes €] xey
Event Pos YES YES e;xes e xXe
Timex Word YES

Timex Type YES YES

Timez Value YES YES

Timez DCT relation YES YES

FEvent’s semantic role © YES YES

Event’s argument’s ont-type YES YES

TLINK event-time signal / YES YES

SLINK event-event relation type 9 YES

°In the MLN framework, we can write formulae in first-order logic. e; x e instances are cases,
where we capture both events together. For example, in case of Tense, it will learn the weights
for temporal relations given first event’s tense is PRESENT and second event’s tense is PAST.
Instead of just considering first event is PRESENT and second event is PAST, we are considering

first event is PRESENT and second event is PAST together.
bTRIPS parser identifies the event constituent along with event word.
“Ontology-type is described in section 7.1.2.
ILexical Aspect classifies the events into Event, State and Reporting class.
“Semantic or thematic role that connects the event and its argument
FTRIPS parser generated event-time TLINK connective or signal (similar to TimeML)
9The SLINK relation type that connects two events, details in section 7.1.4.

Table 4.15: Features used for TempEval-2 (TE2) Task C, D, E and F or TempEval-1
(TE1) Task A, B and C.
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and Tannier, 2007 (HTO07)) extracted features from text. But LCC-TE has
a component called Temporal Merger, which compares the event and tempo-
ral tagging and if there are inconsistencies then it matches with TempEval-1,
which is to say for missing cases they will use TempEval-1 data. As a re-
sult, their recall is not actual recall and their precision is also slightly inflated
by some TempEval-1 gold annotations. So we only compare with XRCE-T.
However, XRCE-T’s Task C’s (event-event relations) recall is not comparable
either. In cases where they missed an event, they use the default value OVER-
LAP, which is the most frequent relationship in Task C. So they get the same
recall as precision, which does not represent the actual recall of Task C, i.e.
how many events they correctly extracted from text and also identified the

relations correctly.

In the Tables 4.16, 4.17 and 4.18, we report our performance (TRIOS)
and compare with other systems. 10cv is 10-fold cross validation performance
on the training data, Test is performance on test data and XRCE-T is the
XRCE-T team’s performance on test data. We also show the best and average

performance for TempEval 1 participants.

Strict Relax
P R F P R F

TRIOS on 10cv 0.58 0.42 0.49 | 0.61 045 0.52
TRIOS on Test data | 0.56 0.43 0.49 | 0.58 0.45 0.51
XRCE-T on Test data | 0.53 0.25 0.34 | 0.63 0.30 0.41
Best on TempEval-1 | 0.62 N/A N/A |064 N/A N/A
Avg on TempEval-1 0.59 N/A N/A |0.62 N/A N/A

Table 4.16: Performance on TempEval-1 Task A

We can see that our performance is competitive with the best and average of
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Strict Relax
P R F P R F

TRIOS on 10cv 0.75 0.65 0.69 |0.79 0.67 0.72
TRIOS on Test data | 0.76 0.67 0.71]0.78 0.69 0.73
XRCE-T on Test data | 0.78 0.57 0.66 | 0.84 0.62 0.71
Best on TempEval-1 | 0.80 N/A N/A |0.84 N/A N/A
Avg on TempEval-1 076 N/A N/A|0.78 N/A N/A

Table 4.17: Performance on TempEval-1 Task B

Strict Relax
P R F P R F

TRIOS on 10cv 0.53 041 0.46 | 0.61 0.47 0.53
TRIOS on Test data | 0.55 0.42 0.48 | 0.61 0.47 0.53
XRCE-T on Test data | 0.42 N/A!' 066 | 0.58 N/A N/A
Best on TempEval-1 062 N/A N/A|064 N/A N/A
Avg on TempEval-1 059 N/A N/A | 062 N/A N/A

I XRCE-T assumed the events from TimeBank for task C. For events that
they couldn’t extract they assumed the default relation OVERLAP, which is

the most frequent relations between consecutive sentences’ main events.

Table 4.18: Performance on TempEval-1 Task C
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the TempEval-1’s performance, even though we are using our own extracted
features and they are using the TempEval-1 annotations. Comparing with
XRCE-T, the only system that extracts features from text like us, we have
shown that in all tasks we outperform them in F-score. Our feature extraction
and event and temporal expression extraction is mostly similar with XRCE-T,
as both of the systems use semantic parsing. We eventually outperform them
because our final system is a hybrid with machine learning classifiers, getting

the best of both worlds.

On TempEval-2 (VSCP10), we submitted two systems, TRIPS and TRIOS.
Both TRIPS and TRIOS use the same MLN classifier with same feature-
set for each task. However the difference is, they take events and temporal
expressions from their respective systems, e.g. in Task C (temporal relation
between events and temporal expressions), TRIPS system will classify relations
for instances where TRIPS event extractor extracted events (TempEval-2 task
B) and TRIPS temporal expression extractor extracted temporal expressions
(TempEval-2 task A). The recall measure of task C will represent the accuracy
of extracting events, temporal expression and identifying temporal relations
together. This applies for all C - F tasks and for our both TRIOS and TRIPS

systems.

For temporal relation identification (Task C - F), most of the teams used
events, temporal expressions and their features from the human-annotated
corpus, whereas, we used our extracted entities and their features that we
extracted in Task A and B. Hence, our performance represents the capability
of identifying these relations from raw text and is a harder classification task,

since we are starting with imperfect features.

Even though we are using our own generated features, we outperformed
other groups in task C (temporal relation between events and temporal expres-

sions) and task E (the relation between main events of consecutive sentences).
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We also have second-best /equivalent performance for two other tasks (relation
between event and DCT; and relation between events where one syntactically

dominates other).

Table 4.19 reports our systems’ performance with precision and recall. For
others, since they take annotated events and features, they do not actually

have a recall, hence their recall is not reported.

Since the TRIPS system for temporal relations (first two columns in Table
4.19) uses the TRIPS events (task B) (performance in Table 4.4), which has a

higher recall, the TRIPS system has higher recall in relations as well.

TRIPS TRIOS Best (with corpus features)

Task Precision Recall | Precision Recall | Precision

Task C 0.63 0.52 0.65 0.52 | 0.63 (JU-CSE, UCFD, NCSU-indi)

TaskD| 076  0.69 | 0.79 0.67 | 0.82 (TIPSem)

Task E 0.58 0.50 0.56 0.42 | 0.55 (TIPSem)

Task F 0.59 0.54 0.6 0.46 | 0.66 (NCSU-individual)

Table 4.19: Performance of Temporal Relations on TempEval-2 (Task C-F)

4.6 An End-to-End System

In the previous sections, we presented our system that extracts temporal in-
formation from texts. However, we are still missing a few components required
to build an end-to-end system, which would output the same information as
TimeML annotations. To do that, we need to: (i) add a module to identify
paired entities which have temporal relations between them; and (ii) train the
classification model on the full set of TimeML relations instead of on the re-

duced set of TempEval-2 relations. With these additions, we can achieve an
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end-to-end system that creates TimeML annotations from raw text. We have

implemented components to do these additional tasks.

For classification of the full set of temporal relations, we train on the
TimeBank (PHS'03) and AQUAINT'? corpora!®, instead of the TempEval-1
(VGST07) or TempEval-2 data.

In order to meet the TimeML specifications, we only identify temporal
relations between the main events of consecutive sentences, and also the rela-
tions between events & temporal expressions that are syntactic arguments of
the main events. Our main event identification module is described in section

4.3.2.

The performance of our end-to-end system, along with the performance of

the state-of-the-art system, is reported at the end of section 6.1.8.

4.7 Summary

We present our work on extracting temporal information from raw text. Our
system for extracting temporal information uses a combination of deep
semantic parsing and machine learning classifiers. We compare our system
with the existing systems doing the same task on TimeBank (PHS*03) and
TempEval (VGST07), (VSCP10) corpora. Our system outperforms or per-
forms comparably with the existing systems. Most importantly, our system
performs all these tasks simultaneously within a single unifying framework.
In contrast, most of the systems, which were compared to our system, were
trained specifically to do just a single task. The performance of our unified sys-

tem is best understood in the performance of temporal relation classification.

"http: / /timeml.org/site/timebank /timebank.html

18Cleaned and updated version of the corpus is available here: http://www.cs.

rochester.edu/ naushad/tempeval3/data/TBAQ-cleaned.zip


http://www.cs.rochester.edu/~naushad/tempeval3/data/TBAQ-cleaned.zip
http://www.cs.rochester.edu/~naushad/tempeval3/data/TBAQ-cleaned.zip
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In TempEval-2, our system outperforms other systems in the two temporal
relation classification tasks and does equally well in the other two tasks by
using our system generated features. Many systems, on the other hand, use

gold corpus features instead of using self-generated features.
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5 Temporal Question

Answering

In this chapter, we present our temporal QA system?, which performs temporal
reasoning to infer implicit relations, and answers temporal yes/no and list

questions.

The initial motivation of the temporal annotation scheme, TimeML
(PCI*03), was to tackle the complex temporal question answering (QA) task.
Due to the complexity of temporal QA, the focus had been shifted to solve
smaller subtasks, such as extracting events, temporal expressions or identifying
temporal relations (VGS107), (VSCP10). As a result, the vast amount of liter-
ature on temporal reasoning? has not been widely applied in the corpus based
temporal information processing research. We explain temporal reasoning in
the following way: “Given a set of explicit temporal relations between a set of
entities, temporal reasoning infers additional relations between entities that is

implicit in the ones given”.

We start the chapter by describing the existing temporal QA systems from
corpus linguistics literature. Next, we present the types of questions our system

answers, and finally we demonstrate that our system uses temporal reasoning

1Our QA system takes a TimeML (PCIT03) annotated document as input.

2Check section 2.7.1 for Temporal Reasoning systems
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to answer temporal questions.

5.1 The  Existing Temporal Question-

Answering Systems

There are some related work on temporal QA by doing temporal reasoning.

Below we briefly describe these systems and their limitations.

Pustejovsky et al. (PWMO02) discuss how TimeML could be used for tem-
poral QA, but do not present any system to do so. Hobbs and Pustejovsky
(HP03) also discuss using TimeML for temporal reasoning, and point out its
importance for temporal QA. However, they do not present any system to do

the task either.

Harabagiu and Bejan’s work (HB05) on QA with temporal inference han-
dles question-answering based on general inference but not temporal inference
in pure sense. The following example briefly explains their approach. Given
the question Q1: “When did Iraq invade Kuwait?” The answer to Q1 — “2 Au-
gust 19907 is extracted from the context: “Iraqis have been struggling under
UN sanctions ever since Hussein’s annexation of Kuwait on 2 August 1990.”
Harabagiu and Bejan identify temporal relations between entities with tem-
poral signals and then make semantic inference to match the question with
the answer context, e.g. matching Iraq’s invasion with Hussein’s annexation.
However, they do not infer implicit temporal relations with temporal reason-
ing.

Moldovan et al.’s work (MCHO05) on temporal reasoning approach the prob-
lem very similarly as Harabagiu and Bejan. They identify the temporal re-
lations between entities and feed a module in their overall inference system.

They do inference between only temporal expressions. Both of these systems
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((HBO5) and (MCHO5)) are unable to do complete temporal reasoning or an-
swer questions such as: listing what happened after some event or inferring

when some event occurred with respect to other events, etc.

Chambers and Jurafsky (CJ08) use transitive closure properties to consider
the global inference to identify temporal relations between two entities. In the
process they can identify how two entities are temporally related, if they are
connected. However, their reasoning is limited to only before, after and vague

relations, whereas, our system handles all 13 Allen relations.

The mainstream question answering systems are web-based systems and
they rely heavily on answer redundancy instead of reasoning (BLB01),
(SVMB*09).

None of these QA systems can answer temporal list questions or perform
the temporal reasoning as we defined in the beginning of this chapter. After
few years of active research in temporal information processing, we currently
have available corpora and automated extraction systems to develop an end-
to-end advanced temporal QA systems performing temporal reasoning. In this

section we report one such system.

The mainstream QA forum TREC? evaluated systems mainly on factoid
questions, list questions and other questions. Like TREC, we consider factoid,
and [ist questions. However, given our focus on temporal reasoning, we include

a yes-no question category as well.

5.2 Temporal Question Taxonomy

We implemented a temporal QA system to address the following question

types:

3http://trec.nist.gov/
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1. (a) yes/no: “Was Fein called after the killings?”

(b) list: “What happened after the crash?”, “What happened between

the crash and yesterday?”

(¢) when (factoid): “When did DT Inc. holders adopt a shareholder-
rights plan?”

To answer these questions the system has to be aware about the temporal
relations of events and temporal expressions, which can be explicit in the

TimeML annotation or implicit (inferred by temporal reasoning).

5.3 Building the Temporal Structure for Tem-

poral Reasoning

We have to build the temporal structure (Figure 1.2) to infer how all entities
are related to each other temporally. We can take benefit of existing temporal
reasoning systems (for summary on temporal reasoning systems, check section
2.7.1) to do this task. We preferred Timegraph (Miller and Schubert, 1990)
(MS90) over the widely used Allen’s interval closure algorithm (Allen, 1983)
(A1183), because of Timegraph’s scalablility? for larger problems (Yampratoom
and Allen, 1993) (YA93). Furthermore, the additional expressive power of
interval disjunction in Allen (1983) does not appear to play a significant role

in the temporal extractions from text?.

4Allen’s temporal closure takes O(n?) space for n intervals, whereas Timegraph takes
O(n + e) space, where n is the number of time points and e is the number of relations
between them. In terms of closure computation, without disjunction Allen’s algorithm
computes in O(n?), whereas Timegraph takes O(n + €) time, n and e are same as before.

Detail comparison about these two systems can be found in section 2.7.1.

®Allen’s closure algorithm is computationally intractable if interval disjunctions are con-

sidered. However, Vilain, Kautz and van Beek (1986, 1990) (VKS86), (VKvB90) showed that
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In this section, we will describe the Timegraph algorithm and our Time-

graph implementation for TimeML temporal relations.

5.3.1 Timegraph

A Timegraph G = (T, E) is an acyclic directed graph in which T is the set of
vertices (nodes) and E is the set of edges (links). It is partitioned into chains,
which are defined as sets of points in a linear order. Links between points in
the same chain are in-chain links and links between points in different chains
are cross-chain links. Each point has a numeric pseudo-time, which is arbitrary
except that it maintains the ordering relationship between the points on the
same chain. Chain and pseudo-time information are calculated when the point
is first entered into the Timegraph. Determining relationship between any two
points in the same chain can be done in constant time simply by comparing
the pseudo-times, rather than following the in-chain links. On the other hand,
relationship between points in different chains can be found with a search in
cross-chain links, which is dependent on the number of edges (i.e. number
of chains and number of cross-chain links). A metagraph keeps track of the
cross-chain links effectively by maintaining a metanode for each chain, and
using a cross-chain links between metanodes. As already described, in-chain
checking can be done in constant time, and a graph search is dependent on the
number of cross-chain links rather than the total number of points. Creation
of all supporting graph structures (including the metagraph) requires O(n+-e)
space and O(n + e) time, where n is the number of time points, and e is
the number of relations between them. More details about Timegraph can
be found in Miller and Schubert (1990) (MS90) and Taugher (1983) (Tau83).

Figure 5.1 shows an example of Timegraph.

Allen’s closure algorithm is tractable if the interval disjunctions are not considered.
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Figure 5.1: One Example of Timegraph

Timegraph only supports simple point relations (<, =, <), but we need
to build the system based on TimeML relations, which is based on interval
algebra. This is not a problem, since single (i.e., non-disjunctive) interval

relations can be easily converted to point relations®.

5.3.2 Timegraph for TimeML

We want to minimize the number of chains constructed by Timegraph to ef-
ficiently build Timegraph for TimeML relations. For each relation we have
to make sure all constraints are met. The easiest and best way to approach
this is to consider all relations together. For example, for interval relation X
includes Y, the point relation constraints are: x1<yl, x1<y2, x2>y1, x2>y2,

x1<x2 and yl1<y2. We want to consider all constraints together as, x1 < y1 <

SInterval relation between two intervals X and Y is represented with points x1, x2, y1
and y2, where x1 and y1 are start points and x2 and y2 are end points of X and Y. Temporal
relations between interval X and Y is represented with point relation between x1, y1; x1,

v2; x2, y1 and x2, y2.
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Allen Equivalent in Point Algebra

relations Point Algebra represented as a chain

Before xl<yl, x1<y2, x2<yl, x2<y2 x1 <x2 <yl <y2
After x1>yl, xI>y2, x2>y1, x2>y2 yl <y2 <xl < x2
Meet xl<yl, xI<y2, x2=y1, x2<y2 x1 <x2 =yl <y2
MetBy x1>yl, x1=y2, x2>yl, x2>y2  yl <y2 =x1 < x2
Start xl=yl, xI<y2, x2>y1, x2<y2 xl =yl <x2<y2
StartedBy  x1=yl, x1<y2, x2>y1l, x2>y2 x1l =yl < y2 < x2
Finish x1>yl, xI<y2, x2>y1, x2=y2 yl <x1 <x2 =y2
FinishedBy x1<yl, x1<y2, x2>yl, x2=y2 x1 <yl <y2 =x2
During x1>yl, xI<y2, x2>y1, x2<y2 yl <x1 <x2 <y2
Contains  x1<yl, x1<y2, x2>y1l, x2>y2 x1 <yl <y2 < x2
Equality  x1=yl, x1<y2, x2>y1l, x2=y2 xl =yl <x2 =1y2

Table 5.1: Interval algebra and equivalent point algebra

y2< x2 and add all together in the Timegraph. In Table 5.1, we show Allen’s
relations”, equivalent representation in point algebra and finally point alge-
bra represented as a chain, which makes adding relations in Timegraph much
easier with fewer chains. These additions make Timegraph more effective for

TimeML corpus.

In this way, we can create the Timegraph or the temporal structure for a
TimeML document, which can answer how two entities are related with each
other in terms of time. The following examples (Figure 5.2 to 5.5) demon-
strates how we build an internal Timegraph representation from a TimeML

annotation.

In Figure 5.2, we only annotated the events and timezxes (temporal expres-

sions) for a document. For these entities, assume we have the relations shown

"Mapping between Allen’s relations and TimeML relations are shown in Table 3.4.
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The British government has formally <EVENT eid=
"el">called</EVENT> for Sinn Fein, the IRA’s
political wing, to be <EVENT eid="e2">expelled
</EVENT> from the multiparty peace <EVENT
eid="e3"> talks</EVENT> on northern Ireland.
The <EVENT eid="e4">move</EVENT> had

been widely <EVENT eid="eb5">expected</EVENT>
after northern Ireland police <EVENT eid="e6">
said</EVENT> they <EVENT eid="e7">believe
</EVENT> the IRA was be-hind two <EVENT
eid="e9">killings</EVENT> in Belfast <TIMEX3

tid="t1">last week</TIMEX3>.

Figure 5.2: An excerpt from a TimeML annotated document

in Figure 5.3.

From the relations in Figure 5.3, we want to create a temporal structure
so that we can easily make inferences about the implicit relations, i.e. identify

how all entities are related to each other in terms of time.

With Timegraph, we create the temporal structure, which represents the
entities to efficiently answer how all entities are related with each other tempo-

rally. The Timegraph representation with pseudo values and chain information

el AFTER e2 e4 AFTER e6

el AFTER e3 e6 SIMULTANEQUS e7

el SIMULTANEQOUS e4 | e6 AFTER t1

e4 SIMULTANEQOUS e5 | e9 IS-INCLUDED t1

Figure 5.3: Temporal relations (shown in easy to understand format) for the

text in Figure 5.2
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talks e3
expelled e2
S called el
| last week t1 said e6 [ move e4
believe e7 expected e5

Figure 5.4: Intuitive temporal structure generated from the temporal relations

in Figure 5.3

for temporal relations in Figure 5.3 is shown in Figure 5.5. As mentioned ear-
lier, Timegraph only supports the point relations, hence intervals are converted
to start and end points, e.g. el will be represented with els (start of el) and

ele (end of el).

300 400
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100 133 166 200 320 430 00 600
: N M
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t1s e9s e%e tle ebs ebe els ele
e7s e7e eds ede
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Figure 5.5: Timegraph representation of relations in Figure 5.3

With the pseudo value and chain information in the Timegraph, we can
see in Figure 5.5 that it is easy to answer how two entities are related with

each other.
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5.3.3 Implementation

Timegraph is scalable. We ran the Timegraph construction algorithm on the
complete TimeBank corpus and found that Timegraph construction time in-
creases linearly with the increase of number of nodes and edges (= # of cross-

chain links + # of chains) (Figure 5.6).
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Figure 5.6: Number of nodes+edges (# of cross-chain links + # of chains)
against time (in seconds) for Timegraph construction of all TimeBank docu-

ments.

The largest document, with 235 temporal relations (around 900
nodes+edges in Timegraph) only takes 0.22 seconds in a laptop computer

with 4GB RAM and 2.26 GHz Core 2 Duo processor.

We also confirmed that the number of nodes + edges in Timegraph also
increases linearly with number of temporal relations in TimeBank documents,
i.e. our Timegraph construction time correlates with the # of relations in

TimeBank documents (Figure 5.7).
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Figure 5.7: Number of temporal relations in all TimeBank documents against

the number of nodes and edges in Timegraph of those documents.

Performance on searching in Timegraph is also shown in Figure 6.6), which
also increases linearly against the number of relations and is computationally

inexpensive.

In Timegraph, we cannot have any inconsistent relations, i.e. inconsistent
relation will be ignored and will not be added in the Timegraph. As a result,
if we have high confidence® relations, it is useful to add them first. Otherwise,

Timegraph will discard valid high-confidence relations afterwards.

For example, we have C<A with confidence 0.4, A<B with confidence
0.8 and B<C with confidence 0.75. If we add relations in this particular order
without considering the confidence, then we will ignore the relation B<C, since

it is inconsistent with the existing relations C<A and A<B in the Timegraph

8We define the confidence score to represent the confidence for an automated system’s
claim. High confidence score means the automated system is confident about the claim and
low confidence score means the automated system is suggesting the claim but it is not too

confident about it.
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(Figure 5.8).

Figure 5.8: Example of discarding high-confidence relation in a Timegraph

due of inconsistency

However, if we add the high-confidence relations first then we will discard

C<A, which is a low-confidence relation (Figure 5.9).

Figure 5.9: Example of adding high-confidence relations first in a Timegraph

Our Timegraph implementation can consider the confidence to add high-
confidence relations first. However, our temporal relation classification module
does not output the probability of different relations that we could feed in
to the Timegraph construction module. However, in our proposed merging
algorithms (section 7.2), we consider the weighted voting from different sources
to calculate the confidence for each relation. In that case, we add the high
confidence suggestions first and later add low confidence suggestions, as long

as it is consistent with the Timegraph.
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Another ideal case would be to classify the temporal relations considering
the global inference (section 3.2.4). Capturing the closure properties in the
classification task would ensure that all classified relations maintain the closure

properties and they will not be discarded in the Timegraph.

5.4 Temporal Question-Answering with Tem-

poral Reasoning

Our implemented temporal QA system is based on Timegraph (section 5.3.1).
The Timegraph is created by adding the TimeML explicit relations. With the
Timegraph’s reasoning mechanism, the derived implicit relations are inferred.
We can therefore answer both explicit and implicit temporal relations with
Timegraph. To answer the questions about TimeML entities (based on time
intervals) using Timegraph (based on time points), we convert the queries to

point based queries.

For answering yes/no questions, we check the necessary point relations
in Timegraph (relations in “Equivalent in Point Algebra” column of Table 5.1)
to verify an interval relation. For example, to answer the question is eventl
after event2, our system verifies whether start(eventl) > end(event2); if it is
verified then the answer is true, if it conflicts with the Timegraph then it is

false, otherwise it is unknown.

For answering list and factoid questions, the system traverses the Time-
graph. For example, if we want to list all events before eventl, our query to

Timegraph would be to find all events that end before the start of eventl.

With the pseudo value and chain information in the Timegraph it is easy
to answer how two entities are related with each other. As a result, we can

easily answer yes/no, list and factoid questions. We describe some examples
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below to demonstrate how we answer these questions.

For answering a yes/no question, Was Fein called after the killings? The
Timegraph query will be IS e1 AFTER e9. We can see in the relations in Figure
5.3 that this particular relation is not explicitly mentioned, but with temporal
reasoning we will be able to answer this implicit relation. In our Timegraph
(Figure 5.5), both el and €9 are in the same chain 1. Hence we will just check

if e1s > e9e, which is true, to answer this question.

300 400
chain 3 F——————
e3s e3e
300
chain 2
e2s
100 133 (166 )200 3%0 ( ! 600
chain 1 I_I_I_ U U :]
t1s e9s (e9e)tie e6s ebe ele
e7s e7e e ede
e5s e5e

Figure 5.10: Showing els > e9e in the Timegraph of Figure 5.5

We can also answer list questions by traversing the Timegraph. If we ask
What happened before calling Sinn Fein? the Timegraph query will be LIST
BEFORE el. We will traverse through the Timegraph in all chains to answer {V

ei: eie < els}. In this case: €6, e7, t1, €9, €2 and e3.
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Figure 5.11: Showing {V ei: eie < els} in the Timegraph of Figure 5.5

For factoid question, we answer all entities that are simultaneous or are
included in the entity. If we ask When did the killing happened? the Timegraph
query will be WHEN e9. Our system will be able to answer during t1 (last week)
by traversing the Timegraph. In this case, we will check entities (temporal

expression and events) ei, such that, {V ei: eis < e9s and eie > e9e}.

300 400

chain 3

Figure 5.12: Showing {V ei: eis < e9s and eie > e9e} in the Timegraph of
Figure 5.5

Currently, our system uses a specific syntax that represents human lan-

guage questions. We do not convert natural language questions to our ques-
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tion syntax automatically, instead we input the questions in timegraph query

syntax.

5.4.1 Evaluation

We created a set of 189 temporal questions (79 yes/no, 63 list and 47 factoid
questions) from 25 TimeML annotated documents. These documents were
randomly selected and the two volunteers came up with the questions by read-
ing only the text, without looking at the existing temporal relations — TLINKS
in the documents. As a result, it captures important time related questions
from a document rather than all possible temporal relations. With these ques-
tions we wanted to evaluate how well our automated systems, TRIOS, can
answer different question types. TRIOS is extracting TimeML annotations
automatically from raw text (discussed in chapter 4) and with the help of our
QA system (this chapter), based on Timegraph, we can answer these temporal
questions. To evaluate TRIOS’s capability to answer temporal questions from
raw text, we take answers obtained by our QA system from the gold annota-
tions as correct answers. Then, we compare these answers with those obtained

from TRIOS. Table 5.2 reports the performance.

Yes/No List Factoid

TRIOS  34.18 37.03 22.04

Table 5.2: Performance in TRIOS on different temporal question types

Next, we evaluate how many yes/no questions can be answered with ex-
plicit TimeML relations, i.e. without temporal reasoning. To determine this,
we check if we can answer the question directly from temporal relations of
annotation (explicit) or whether we have to use timegraph (implicit) to make

temporal inference. Out of our 79 yes/no questions, the gold annotation was
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capable of answering only 42 questions in the first place. Out of these 42 ques-
tions, we found only 7 (16.67%) were explicitly annotated and rest (83.3%)
were answered with temporal inference. The rest were unknown, i.e. the hu-
man annotation did not provide the information needed to make the inference.

This performance is reported in Table 5.3.

Gold annotation answered from explicit annotation — 7/42

Gold annotation answered with implicit annotation — 35/42

(making temporal inference with timegraph)

Gold annotation unable to support needed inference 37/79

Table 5.3: Statistics of explicit vs implicit questions

This statistics in Table 5.3 suggest that gold annotation is not complete
enough to answer many questions and we need to do temporal reasoning to

answer the majority of the questions.

More detailed evaluation and thorough analysis of our QA system on
TimeML annotated documents can be found in section 6.2, where we use

our QA system to evaluate systems extracting temporal information.

5.5 Summary

We present a question-answering (QA) system capable of temporal rea-
soning, given a TimeML annotated document. Our QA system creates the
temporal structure using a Timegraph (MS90), which helps our QA system
to infer the implicit temporal relations from the explicit ones. With the help
of the temporal structure, our QA system answers yes/no, list and factoid
questions. Since our system is generic, it can be used to answer temporal

questions about any document annotated in TimeML.
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Our experiments indicate that the vast majority of the temporal questions
cannot be answered by the available explicit relations between entities anno-
tated in the corpora. Answering these questions requires temporal reasoning

to obtain the implicit relations between entities.



119

6 The Evaluation of Temporal

Information

In this chapter, we propose new metrics to evaluate temporal annotation and

temporal information understanding.

Prior evaluation methods (section 3.3) for different temporal information
extraction (TIE) subtasks have borrowed precision and recall measures from
the Information Retrieval community, which are not completely suitable for
evaluating temporal annotations. To resolve this issue, we propose a new
method to evaluate temporal annotations, which has been adopted to evalu-
ate the TempEval 2013 participants. Our new metric considers semantically
similar, but distinct, temporal relations and consequently gives a single score

that could be used to identify the overall temporal awareness of a system.

However, evaluating temporal annotations is not the best way to evalu-
ate a system’s capabilities of understanding temporal information. Thus, we
propose an additional approach, using temporal question-answering, to better

evaluate the temporal information understanding.
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6.1 Evaluation of Temporal Annotation

We propose a new method for evaluating systems that extract temporal infor-
mation from text. We use temporal closure to reward relations that are equiva-
lent but distinct. Our metric measures the overall performance of systems with
a single score, making comparison between different systems straightforward.
Our approach is easy to implement, intuitive, scalable and computationally in-
expensive. Our proposed metric has been adopted for evaluating participants

at TempEval-3.

6.1.1 Motivation

Prior evaluation methods (section 3.3) for different TIE subtasks have bor-
rowed precision and recall measures from the information retrieval community.
This has two problems: First, systems express temporal relations in a differ-
ent, yet equivalent, ways. Consider a scenario where the reference annotation
contains el<e2 and e2<e3 and the system identifies the relation el<e3. The
traditional evaluation metric will fail to identify el<e3 as a correct relation,
even though it is a logical consequence of the reference annotation. Second,
traditional evaluations tell us how well a system performs in a particular task,
but not the overall performance. For example, in TempEval-2 there were 6
subtasks (event extraction, temporal expression extraction and 4 subtasks on
identifying temporal relations). If different systems perform best in different

subtasks, we cannot compare overall performance of systems.

Using Timegraph, we use temporal closure to identify equivalent temporal
relations and produce a single score that measures the temporal awareness of

each system.
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6.1.2 Related Work

To calculate the inter-annotator agreement between annotators in the temporal
annotation task, some researchers have used semantic matching to reward
distinct but equivalent temporal relations. Such techniques can equally well

be applied to system evaluation.

Setzer et al. (2003) (SGHO03) use temporal closure to reward equivalent
but distinct relations. Consider the example in Figure 6.1 (due to Tannier
and Muller, 2008 (TMO08)). Consider graph K as the reference annotation
graph, and S1, S2 and S3 as outputs of different systems. The bold edges
are the extracted relations and the dotted edges are derived. The traditional
matching approach will fail to verify that B<D is a correct relation in S2, since
there is no explicit edge between B and D in the reference annotation (K). But
a metric using temporal closure would create all implicit edges and be able to

reward B<D edge in S2.

<
K A — B = > = 2
S ‘
....... < e
S A—= 3 c—=_ s
<
So AL\4'<—>B/?\:D
......... <
Ss A—= B = - C D

Figure 6.1: Examples of temporal graphs and relations

Setzer et al.’s approach works for this particular case, but as pointed by
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Tannier and Muller (2008), it gives the same importance to all relations,
whereas some relations are not as crucial as others. For example, with K again
as the reference annotation, S2 and S3 both identify two correct relations, so
both should have a 100% precision, but in terms of recall, S3 identified 2 ex-
plicit relations and S2 identified one explicit and one implicit relation. With
Setzer at al.’s technique, both S2 and S3 will get the same score, which is not

accurate.

Tannier and Muller handle this problem by finding the core! relations.
For recall, they consider the reference core relations found in the system core
relations and for precision they consider the system core relations found in
the reference core relations. They noted that core relations do not contain
all information provided by closed graphs. Hence their measure is only an
approximation of what should be assessed. Consider the previous example
again. If we are evaluating graph S2, they will fail to verify that B<D is a

correct edge.

We have shown that both of these existing evaluation metrics reward rela-

tions based on semantic matching, but still fail in specific cases.

6.1.3 Evaluation of Temporal Annotation

We also use temporal closure to reward equivalent but distinct relations. How-
ever, we do not compare against the temporal closure of reference annotation
and system output, like Setzer et al., but we use the temporal closure to verify
if a temporal relation can be derived or not. Our precision and recall is defined

as:

IFor relation Ra.p between A and B, derivations are Ra.c, Rp,c, Rap, Rpp. If
the intersection of all these derived relations equals R4 p, it means that R4, p is not a core
relation, since it can be obtained by composing some other relations. Otherwise, the relation

is a core, since removing it tends to loss of information.
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Precision = SyS o] (6.1)
R relati N S by ;
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where, G is the closure of graph G.

We calculate the Precision by checking the number of system temporal

relations (SYSyeiation) that can be verified from the reference annotation tem-

+

ration), out of number of temporal relations in the

poral closure graph (Re
system output (SYs,eiation). Similarly, we calculate the Recall by checking the

number of reference annotation temporal relations (Ref,eiation) that can be

+

verified from the system output’s temporal closure graph (Sys,.i.iion

), out of

number of temporal relations in the reference annotation (Re freiation)-

The harmonic mean of precision and recall, i.e. fscore, will give an evalu-

ation of the temporal awareness of the system.

As an example, consider again the examples in Figure 6.1, with K as ref-
erence annotation. S1 and S3 clearly have 100% precision, and S2 also gets
100% precision, since the B<D edge can be verified through the temporal clo-
sure graph of K. Note, our recall measure does not reward the B<D edge of
S2, but it is counted for precision. S1 and S3 both get a recall of 2/3, since 2
edges can be verified in the reference temporal closure graph. This scheme is
similar to the MUC-6 scoring for co-reference resolution (Vilain et al., 1995)
(VBAT95). Their scoring estimated the minimal number of missing links nec-
essary to complete a co-reference chain in order to make it match the human
annotation. Here in both S1 and S3, we are missing one edge to match with
the reference annotation; hence 2/3 is the appropriate score. Precision, recall

and fscore for all these system output are shown in Table 6.1.
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System Precision  Recall  Fscore

S1 2/2=1 2/3=0.66 0.8
S2 2/2=1 1/3=0.33 0.5
S3 2/2=1 2/3=0.66 0.8

Table 6.1: Precision, recall and fscore for systems in Figure 6.1 according to

our evaluation metric

6.1.4 Implementation

Our proposed approach is easy to implement with an existing temporal closure
implementation. We used our Timegraph implementation (section 5.3.1) to

verify relations in the closure graph.

6.1.5 Evaluation

Our proposed evaluation metric has some very good properties, which makes
it very suitable as a standard metric. This section presents a few empirical

tests to show the usefulness of our metric.

Our precision and recall goes with the same spirit with traditional precision
and recall, as a result, performance decreases with the decrease of information.

Specifically,

1. If we remove relations from the reference annotation and then compare
that against the full reference annotation, then recall decreases linearly.

Shown in Figure 6.2.
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Figure 6.2: For 5 TimeBank documents, the graph shows performance drops

linearly in recall by removing temporal relations one by one.

2. If we introduce noise by adding new relations, then precision decreases

linearly (Figure 6.3).

1.2

c 47 relations
,& —— 23 relations
ol 43 relations
£ 26 relations
a —#— 163 relations
0.4
0.2

0 T T T
0 5 10 15 20
number of new {(wrong) relation added

Figure 6.3: For 5 TimeBank documents, the graph shows performance drops

linearly in precision by adding new (wrong) temporal relations one by one.

3. If we introduce noise by changing existing relations then fscore decreases

linearly (Figure 6.4).
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Figure 6.4: For 5 TimeBank documents, the graph shows performance drops

linearly in fscore by changing temporal relations one by one.

4. If we remove temporal entities (such as events or temporal expressions),
performance decreases more for entities that are temporally related to
more entities. This means, if the system fails to extract important tem-

poral entities then the performance will decrease more (Figure 6.5).

1.2

47 relations
—— 23 relations

43 relations

26 relations
—#— 163 relations

recall

0 T T T T T
0 2 4 & B 10 12
number of entities removed

Figure 6.5: For 5 TimeBank documents, performance drop in recall by remov-

ing temporal entities.
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In our experiment, we remove the temporal entities related with a max-
imum number of entities first. It is evident from the graph that perfor-

mance decreased more for removing important entities (first few entities).

These properties explain that our final fscore captures how well a system
extracts events, temporal expressions and temporal relations. Therefore this
single score captures all the scores of six subtasks in TempEval-2, making it

very convenient and straightforward to compare different systems.

Our Timegraph implementation is also scalable (shown in section 5.3.3).
Searching in Timegraph, which we need for temporal evaluation, also depends
on number of nodes and edges, hence number of TimeBank relations. We ran a
temporal evaluation on TimeBank corpus using the same document as system
output. The operation included creating two Timegraphs and searching in the
Timegraph. As expected, the searching time also increases linearly against the

number of relations and is computationally inexpensive (Figure 6.6).
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o ' ' ' '
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# of relations

Figure 6.6: Number of relation against time (in seconds) for all documents of

TimeBank corpus.

These properties explain why our metric is very suitable as a standard



128

metric. In the next section, we explain where our metric falls short and addi-

tionally we also propose an updated solution.

6.1.6 Problem with our Existing Solution

Our proposed solution works perfectly to identify the number of explicit rela-
tions (links) missing to complete the human annotation by semantic matching.
However, it fails? to distinguish if some systems are extracting more implicit
relations than other systems. These implicit relations are extra information
that other systems are missing and can be verified from the temporal closure

of the reference annotation.

K As——>»B—» C——®D
SIT-ols< -7 P
S
/\
St A—=>8 c D S5 Aw" C LD

Tl -7 s6 A—=»B c—= D

. g_--" \/v g
R -
S3 A—>»B C——»D RRNE SS
<
S4 A%’E%ﬁc D S7 A%»B%C;\ED

Figure 6.7: Reference annotation K and system annotations S1-S7

Consider the examples in Figure 6.7 to clarify the problem, where K is
the reference annotation. Explicit relations are shown as solid lines and the
inferred relations as dashed lines. Both S1 and S2 get 100% in precision since

their extracted relations can be verified in the closure of reference annotation.

2This problem was identified by Professor Lenhart K. Schubert
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Both of them also extract one explicit relation (A<B) and miss two explicit
relations, i.e. if we include two more relations then we can get the same
annotation as the reference annotation. Even though S2 has one extra relation,
to get to the reference annotation, it still needs to add two relations like S1.
Hence, they get same score according to our proposed solution in section 6.1.3.
However, S2 is extracting some extra implicit information, which makes it
better than S1, even though still worse than S4 (since we can get the reference
annotation from S4 just by adding one relation). In this section, we propose an
extension to our proposed solution in section 6.1.3 to make these distinctions.
At the same time, we want our proposed solution in section 6.1.3 to reward
S3 and S4 equally, even though S4 has one extra relation. Here this extra
relation is found by taking the closure of existing relations; it is not giving any
extra information, such as S2’s B<D relation against S1. And in both cases,
we need another relation to get the reference annotation; hence, both S3 and
S4 would be rewarded equally. We also make sure this property holds in our

updated solution.

6.1.7 Proposed Updated Solution

Following are the issues we want to consider in our updated solution:

1. Maintain the properties of our proposed solution in section 6.1.3 to re-

ward explicit relations appropriately.

2. Not to reward implicit relations that can be derived from the existing
core relations. To handle this we consider the reduced graph, which
is derived from the original graph by removing all temporal relations
that do not cause a loss in temporal information, i.e. we keep all core
relations and remove only the relations that can be derived from the core

relations. For example, assume we have A<B, B<D, A<D relations in
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a graph (consider S2 in Figure 6.8). In our reduced graph we will only
have A<B and B<D. A<D will be removed from the reduced graph since

we can derive it with the temporal closure.

The Timegraph (MS90) algorithm maintains the reduced graph and in-
fers implicit relations. Our proposed solution in section 6.1.3 depends
on Timegraph for temporal closure, hence we take benefit of Timegraph

for reduced graph implementation too (check section 5.3.1 for details).

Figure 6.8: Graph S2 showing extra implicit relation B<D

3. Given the reduced graph and the closure graph, we can easily find the

extra implicit relations that we want to reward.

Given our reference graph K, for graph S2, A<B is a core relation. B<D
is an implicit relation in graph K, but it is a core relation for S2, which
we want to reward. A<D is an implicit relation for S2 that we can derive
from core relations, so we do not want to reward it. We would loosely
refer A<B relation as explicit relation and B<D as implicit relation in

the rest of the section.

4. We want to reward B<D to distinguish with other systems (e.g. against
S1 in Figure 6.7), but we do not want to reward B<D equally as A<B

or core/explicit relations of the reference graph.

Considering all these issues, we developed the following formula.

|Sys.. N Reft |

relation relation

|Sys,.

relation |

Precision = (6.3)
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- + — - +
RGC(I” — |R6frelation N Sysrelation’ + W * |(Sy8relation _ Refrelation) N Refrelationl
|R€f7;lation|
(6.4)
Where, w = — 0.99 — described below.
’ (1+|#Refrelation‘7IRefrelationmSysrelation|) ’

Our proposed updated solution has the following criteria:

1. G is the closure graph of G and G~ is the reduced graph of G. Our
precision formula and first part of recall formula remains same as our
proposed solution in section 6.1.3. The only difference is, here we are
considering the reduced graph, whereas the earlier solution was consid-
ering the actual graph. Reduced graph is more appropriate, since it
does not reward or penalize for redundant information. This part of the

formula maintains the properties of that solution.

2. For recall, we calculate explicit relations and implicit relations separately.
The recall score will sort the systems in terms of the explicit relations
first and then based on the implicit relations. That is, our improvement
will distinguish systems that extract more implicit relations with equal
number of explicit relations. For example, in Figure 6.7, S2 will get
higher recall than S1 and S4 will get higher recall than S2. For clarifi-
cation, (Ref,,

ation N Sys ) captures system explicit relations that

relation

relation elation) Captures

are found in gold explicit relations; (Sys,, — Ref,.

implicit system relations in terms of Ref,, this will capture B<D

elation’

in S2; (Sys,. — Ref,. N Ref: verifies the extra implicit

relation elation) elation

relation is a valid implicit relation in terms of reference closure graph.

3. Finally, we formulate w in a way so that we always sort with the explicit

0.99
(1+|#Ref |—|Ref. NSys D’

relation elation relation

relation count first. We define, w =
where the denominator captures the maximum number of implicit rela-

tions possible.
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(Ref,.

clation 1SYS captures the number of explicit relations for Sys.

T’elatzon)

In Figure 6.7, for S2, it will contain only A<B.

#Refl, ... captures maximum possible relations for entities in

Sys.. Ref could be approximated with  n % (n — 1), max-

relation* relation

imum possible relations with n entities, where n(>= 0) is the number

of temporal entities, events or temporal expressions in Ref, For

relation*

#Re f 5 1arion, we consider n = |Sys_, i, N Re fonir,|, this way we do not

entity

consider extra entities that do not contribute to the maximum relations

|(Sy$ Ref N Ref elatzonl is the

elatwn)

possible for Sys. .

relation* relation

implicit relations extracted by the system. We capture the maximum
possible implicit relations (total relations - core relations) with the de-

— Ref, N Ref:

| is at

elation

nominator of w. Hence, w * |(Sys,. clation)

relation

most 0.99. For n < 2, the number of maximum possible relations can
be equal to maximum core relations, i.e. it might not have any implicit

relations. In that case, (|[#Ref.t ionl — |RES N Sys,, equals

elation relation | )

to 0, hence the additional +1 in the equation.

4. If all explicit relations exist in Sys_, graph then Sys

Ref,. — Ref,.

elation>

relation relation

hence Sys,, = {} and Recall = 1.

relation elation —

5. Sys.. — Ref,.

relation Will be non-empty if there are implicit relations.

relation

It happens if we are missing any explicit relations. If at least one explicit

— Ref, N Reft

1s at most

relation

relation is missing, w * |(Sys,, elation) N

0.99.

relation

6.1.8 Evaluation of Updated Solution

Given that our improvement could use the existing temporal closure to verify
the implicit relations, our updated evaluation metric also maintains the criteria

of our proposed solution in section 6.1.3, which are:
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1. Our measure decreases with the decreasing of information (in a mono-
tonic and regular way, linearly with the level of information or correctness

provided).

2. Evaluation time for a document linearly increases with the number of

relations in the document.

To understand the difference when accounting for implicit relations, we
consider our formula, described in section 6.1.3, with reduced graph to match

with our new proposed metric.

Precision = |Sy8;elation M Ref:;laticm‘ (65)
|Sy8;elation|
Ref ution N SYST, .
Recall = | efrelatwn ysrelatwn‘ (66)

’Ref'r;lation |

To evaluate the performance of our updated solution and to compare
against other evaluation metrics, we artificially created some graphs. In the
reference graph (annotation), all the nodes are connected in a way, such that
{Vi|N; < N1}, where Nj; is the i"* node. In graph G1, we have few core
relations. In G2, we added some implicit relations, which are useless in the
sense that it does not add any extra information, i.e. it can be derived from
the existing core relations. Finally, in G3, we added some useful implicit re-
lations, which are new information, i.e. cannot be derived from the existing

core relations. All these annotations (graphs) are shown in Figure 6.9.

We compare the performance of system annotations (G1, G2, G3) using
five evaluation metrics (Table 6.2) and show the performance in Table 6.3 and

6.4.
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Figure 6.9: Reference annotation and System annotations (G1, G2, G3) (with

number of nodes, n = 9) to compare temporal evaluation metrics
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Evaluation Metric Recall Precision
TempEval-2 (VSCP10) %Q}st @%yfef
Setzer et al. (SGHO3) %r}iw Sys;;%ﬁ
Tannier and Muller (TMO0S) Ref};% Sys DRef”
ef Sys
5 : |Ref~NSys™t| |Sys—NRef|
Our ACL’11 metric (Eqn 6.5) SR T
. |Ref~NSysT|+wx|(Sys™—Ref )NRefT|1 |Sys NRefT|
Our Updated metric (Eqn 6.3) R Sy

0.99
1+|#Reft|—|Ref—NSyst|)

! where, w = (

Table 6.2: Metrics for Temporal Evaluation

few core adding useless adding useful
relations - G1 implicit relations - G2 implicit relations - G3

G1 Recall G1 Precision | G2 Recall G2 Precision | G3 Recall G3 Precision
TempEval-2 (VSCP10) 0.75 1 0.75 0.66 0.75 0.6
Setzer et al. (SGHO3) 0.25 1 0.25 1 0.3611 1
Tannier and Muller (TMO8) 0.75 1 0.75 1 0.75 0.6
ACL’11 metric (Eqn 6.5) 0.75 1 0.75 1 0.75 1
Updated metric (Eqn 6.3) 0.75 1 0.75 1 0.7659 1

Table 6.3: Performance Comparison for graphs in Figure 6.9 with n=9 nodes
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few core adding useless adding useful
relations - G1 implicit relations - G2 implicit relations - G3
G1 Recall G1 Precision | G2 Recall G2 Precision | G3 Recall G3 Precision

TempEval-2 (VSCP10) 0.6896 1 0.6896 0.66 0.6896 0.5263
Setzer et al. (SGHO03) 0.0689 1 0.0689 1 0.1103 1

Tannier and Muller (TMO08) | 0.6896 1 0.6896 1 0.6896 0.5263
ACL’11 metric (Eqn 6.5) 0.6896 1 0.6896 1 0.6896 1
Updated metric (Eqn 6.3) 0.6896 1 0.6896 1 0.6911 1

Table 6.4: Performance Comparison for graphs in Figure 6.9 with n=30 nodes

From the Table 6.3 and 6.4 we observe the following:

1. TempEval-2 evaluation metric (VSCP10) fails when we have any im-
plicit relations, since the matching is exact matching instead of semantic

matching.

2. Tannier and Muller (2008) (TMO08)) showed Setzer et al. (2003) (SGH03)
gives equal weights to all relations (both implicit and explicit), hence it
gives a misleading lower score for evaluation. It is even more evident

when we have more relations (check recall scores for Setzer et al. in

Figure 6.4).

3. Except TempEval-2 metric, all other metrics’ score remained same when

we added useless implicit relations (difference between G1 and G2), since

all other metrics are doing semantic matching.

4. When useful implicit relations are added, we would expect the evalu-
ation metric to reward systems. We find that performance using our
ACL’11 metric remained same, and it even decreased in precision for
TempEval-2 metric and Tannier and Muller’s metric. However, it in-

creased for both Setzer et al.’s solution and our improved solution.
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Comparing the performance of different systems and our observations, it
is evident that Setzer et al. and our updated metric gives higher performance
for better systems by rewarding the implicit relations. However, Setzer et al.’s
score is practically unusable due to its score range (check recall scores for Setzer
et al. in Figure 6.4). On the other hand, our updated metric’s improvement
for adding useful implicit relations is not very significant either, but it is
comparable to our earlier metric (equation 6.5), which has been adopted to

evaluate TempEval participants.

Next, we report the performance of two state-of-the-art systems, TIPSem
(LSNC10) and TRIOS (chapter 4) in TimeBank 1.2 corpus (PHST03) using
both our ACL’11 metric (Table 6.5) and our updated metric (Table 6.6) for

comparison.

Precision (%) Recall (%) Fscore (%)

TIPSem 27.2048 35.8517 30.9354
TRIOS 26.6020 27.2986 26.9458

Table 6.5: Performance of TIPSem and TRIOS with equation 6.5, metric

similar to our proposed solution in section 6.1.3.

Precision (%) Recall (%) Fscore (%)

TIPSem 27.2048 35.8771 30.9448
TRIOS 26.6020 27.3528 26.9722

Table 6.6: Performance of TIPSem and TRIOS with our updated metric
(Equation 6.3 and 6.4).

Comparing Table 6.5 and Table 6.6, we can see that, in terms of numbers,
the difference is insignificant (+0.2% improvement in recall) from our proposed

solution in section 6.1.3. However, this difference is important, since (i) we
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only distinguish systems with same number of explicit relations but different
number of implicit relations, and (ii) we are considering the maximum reward
for all implicit relations in a document less than the reward of just one explicit

relation.

6.1.9 Comments on the Updated Solution

Even though our updated solution is based on the idea that reward for all
implicit relations will be less than one explicit relation, we think this idea is

partially flawed.

For instance, we take a set of explicit relations and generate a new graph
where we generalize the explicit relations slightly — e.g. we change every before
relation to (before OR meet)3. That gives us a new graph with much useful
information in it - but it will get a worse score than a minimal graph that
has just one of those explicit relations changed back to its original value and

deleting all the others.

Future research in this area should explore this problem when proposing a

updated metrics.

6.2 Evaluating Temporal Understanding with

Question Answering

In the previous section we proposed evaluation metrics for evaluating temporal

annotations. In this section we propose a metric to evaluate the temporal

3Note this disjunction can be captured in a point-based logic. In point-algebra X before
Y is Xsta'rt < Xend < Ystart < Yend and X meet Y is Xstart < Xend = Y;tart < Yend~ Hence7
in point-algebra, we can easily capture X before OR meet Y with Xgtart < Xena < Ystart <

Yena. However, in our Timegraph implementation, we do not capture the disjunctions.
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information understanding.

6.2.1 Motivation

The initial purpose of the temporal annotation scheme, TimeML (PCI*03),
was to handle the complex temporal question answering (QA) task. Given
the complexity of temporal QA, the focus was shifted to solve the automated
TimeML annotation subtasks. Currently, the automated systems solving these
subtasks are evaluated using corpus-based approach (section 3.3 and 6.1). On
the other hand, task based evaluations have not been proposed for temporal

information processing.

Corpora annotated in TimeML are certainly needed for developing and
training automated systems. However, we argue that measuring how well au-
tomated systems understand the temporal aspects of language with a corpus-
based evaluation is not the most appropriate evaluation. Temporal question

answering makes a much better evaluation. Our main arguments are as follows:

1. Answering questions is a natural way of evaluating language understand-
ing for humans. Using temporal question answering, we can better judge

how well systems understand the temporal information of a document.

2. Creating temporal questions is much easier and less time-consuming for
humans than annotating temporal information. It makes it possible to
easily create large test-sets and also to evaluate the generality of systems

in new domains.

3. Corpus-based performance may not reflect how well systems can un-
derstand important temporal information. Since humans ask questions

about relevant information, QA scores better capture the understanding
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of important temporal information as compared to corpus-based evalu-

ation where all information is equally important for scoring.

4. Human annotations can be incomplete. Evaluating automated systems
against incomplete annotation might not reflect the actual performance
of automated systems. With QA, we can also evaluate: (i) how complete
the available human annotations are and (ii) how automated systems are

performing compared to human annotations.

We presented our temporal QA system (in Section 5.4) that handles tem-
poral reasoning. Our system allows answering complex temporal questions
about a text annotated with TimeML. In this section we will show that our

system can be used for evaluation of temporal understanding.

6.2.2 Temporal QA as Evaluation

We created a set of 189 temporal questions (79 yes/no, 63 list and 47 factoid
questions) from 25 TimeML annotated documents. With these questions we
evaluated how accurate the annotations of automated systems are against
gold human annotation, i.e. how these systems understand these documents
in terms of temporal information. To evaluate that, we take answers obtained
by our QA system from the gold annotations as correct answers. Then, we
compare these answers with those obtained from automated annotations. As
automated systems, we consider TIPSem (LSNC10) and TRIOS (chapter 4)
from TempEval-2 (VSCP10). Table 6.7 reports the QA results in addition to
the results of these systems using our proposed metric in section 6.1.3, which

gives a single score for corpus-based evaluation (corpus-score).
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Yes/No List Factoid Corpus-score

TIPSem  48.10 43.49 53.30 31.60
TRIOS  34.18 37.03 22.04 27.16

Table 6.7: Performance in Temporal QA and corpus based score against gold

annotation

In our experimental data, we find that TIPSem does better than TRIOS in
every category of questions which matches corpus-based score. However, we
can see that TTPSem does significantly better than TRIOS in factoid question.
Corpus-scores cannot distinguish on how well systems actually perform real
tasks like answering factoid questions. By evaluating with temporal QA we

can understand the detailed capabilities of systems.

In the next experiment we manually answered the yes/no questions and
compared the performance of systems and gold annotation against human
answers to understand the coverage of human temporal annotations and au-

tomated temporal annotations. The results are reported in Table 6.8.

Gold TIPSem TRIOS

Comparing Yes/No answers 48.10 3797 22.78

against human answers

Comparing No/Yes answers 100 48.10 34.17

against TimeML gold annotations

Table 6.8: Comparison of gold and system annotations against human answers

We found that performance for gold annotation is not 100% (it is only
48%). This is because the gold annotation does not have complete temporal
information coverage, i.e. it does not have all necessary relations to allow

the reasoning required to answer the questions. It is important to note that
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with our QA system, an annotation with complete coverage will have a 100%

performance for these questions.

Another thing to note is, when comparing against human answers, the dif-
ference between the gold performance and system performance is much lower.
This result is suggestive that automated systems can perform very close to

human annotations currently available.

We also notice that all scores decrease from the performance reported in
Table 6.7. This is because many yes/no questions cannot be answered from the
gold annotation, i.e. the gold annotation did not have all necessary relations
to make the inference. When the systems also answered unknown in those
cases, they had a match. Hence, when compared against the exact human

answers (usually not unknown), all the scores decreased.

Finally, we wanted to find out if there are some questions that one of
the systems could answer but was not answerable from the gold annotations.
We found that there were 11 such instances for TIPSem system and 12 such
instances for TRIOS system. For example, one such instance was the yes/no
example we showed in the section 5.4 - IS el AFTER e9. The gold annotation
had the relation el SIMULTANEQUS e4, but it was missing other necessary
relations to infer the relationship between el and e€9. However, one system
was able to answer this particular question. This experiment also strengthens

our claim about incompleteness of human temporal annotations.

The incompleteness of human temporal annotation is also discouraging for
evaluating automated systems in corpus-based evaluation. Since we will end
up penalizing automated systems for some good extraction as well. All human
annotation suffers this problem, but in this case, annotating temporal infor-
mation is much harder than answering some temporal questions from text, i.e.
less chance to have wrong human answers than wrong human annotation. As

a result, this is an additional advantage of evaluating temporal understanding
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with QA compared to corpus-based annotation evaluation.

6.3 Summary

We propose an evaluation metric that considers semantically similar, but dis-
tinct, temporal relations to evaluate automated systems that extract temporal
information. Our metric also evaluates how well a system extracts events and
temporal expressions. Additionally, this metric produces a single score, which
could be used to identify the temporal awareness of a system. Our approach
is intuitive and easy to implement. We implemented the metric using a Time-
graph for handling temporal closure in the TimeML derived corpora, which

makes the implementation scalable and computationally inexpensive.

Our proposed metric has been adopted to evaluate participants in
TempEval-3. However, our metric does not reward a few implicit relations.
To resolve this issue, we propose an updated solution, which rewards those
implicit relations, but it does so very insignificantly. Future research in this

area can explore this problem.

Next we propose the evaluation of temporal information under-
standing with temporal question-answering. Our proposal is motivated by
the benefits inherent in the use of QA to assess the understanding of natu-
ral language. The benefits of using temporal QA for temporal information
understanding are, (i) QA represents a task-focused way of evaluation, which
is natural and simple for humans; (ii) it is much easier to create temporal
questions (needed to evaluate temporal information by QA) than annotating
new documents with temporal information (needed to evaluate by corpus).
Hence, the evaluation by QA allows to create a larger test set more easily. (iii)
moreover, QA also allows the evaluation of temporal understanding in other

domains, which enables the testing of the generality of the systems.
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We find that the existing human annotations are not complete enough to
infer the implicit relations needed to answer all the questions. As a result, when
evaluating by the corpus-based evaluation against the human annotation, we
are comparing against something incomplete. QA based evaluation, however,

does not entail the same problem.

Since humans ask questions about relevant information, QA scores would
better capture the understanding of important temporal information as op-
posed to the corpus-based evaluation, in which all information is equally im-
portant for scoring. Our experiments show that the QA scores of two systems
correlate to the results obtained by the corpus-based evaluation. However, the
QA-based performance clarifies the system capabilities in the target applica-

tion.

Future researchers can explore our QA evaluation to analyze the perfor-
mance of automated temporal information understanding systems in new do-

mains, such as the medical domain and the educational domains.
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7 Improvements over the

Existing Resources

In this chapter, we describe the contributions of this dissertation in improving

the existing temporal resources.

At first we present the TRIOS-TimeBank corpus, an extended TimeBank
corpus with additional semantic information. Next, we demonstrate algo-
rithms to merge multiple temporal annotations. Finally, we describe our con-

tributions to TempEval-3 Shared Task.

7.1 An Extension of the Existing Tempo-
rally Annotated Corpus and Annotation

Scheme

Temporal annotation is hard task for humans, low inter-annotator agreement!
for TimeBank corpus explains this very well. Since our system (section 4)
extracts these information automatically and systematically, it can be used
to find human errors. At the same time, our system uses semantic parsing

and extracts other information that TimeBank does not include. With these

Thttp: //www.timeml.org/site/timebank /documentation-1.2.html#iaa
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benefits, we approached the task of extending the TimeBank corpus. Our
first goal is to suggest missing TimeBank events and temporal expressions, i.e.
events and temporal expressions that were missed by TimeBank annotators.
Along with that we also suggest some additions to TimeML language by adding
new event attribute (such as ontology type), some more SLINKs and also
relations between events with their arguments, which we call RLINK (relation
link). With our new suggestions we present the TRIOS-TimeBank corpus, an
extended TimeBank corpus. In this section, we will describe our techniques

very briefly. Our newly developed corpus is available online?.

7.1.1 Suggesting New Events in TimeBank

The low inter-annotator agreement in TimeBank suggests that there should
be some effort to refine TimeBank events. It is hard to automatically suggest
that some annotated event in TimeBank is wrong; so we only suggest new

events that are missing in TimeBank.

The TimeML (PCIT03) specification suggests not to tag Generic interpre-
tations, even though capturing them could be of use in question answering. By
generics, they mean, events that are not positioned in time, or in relation to
other temporally located events in the document. For example, they wouldn’t
annotate use and travel in the sentence: Use of corporate jets for political

travel is legal.

It also suggests not to tag subordinate verbs that express events which are
clearly temporally located, but whose complements are generics. For example,
He said Jews are prohibited from killing one another. Even though the verb

said is temporally located, it isn’t tagged because its complement, Jews are

2TRIOS-TimeBank corpus is available online at: http://www.cs.rochester.edu/u/naushad/trios-

timebank-corpus
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prohibited from killing one another, is generic.

And finally an event nominalization that does not provide any extra infor-

mation than the supplied verbs, are also not tagged.

Many of the extra events generated by TRIOS that are not in TimeBank
fall into these categories. We made a decision to only suggest verbal events,
so we do not have to worry about the last case. For verbal events, our task

would be to keep the events that matches with TimeML specification.

There is one case where we decided to tag events even though they don’t
meet the TimeML specification. An example is, He said the earth is round.
They killed him.. Here, “the earth is round” is generic by their definition.
According to their scheme, “said” won’t be annotated. But this saying event
might explain rest of the story, i.e. in this case, why he was killed. If we don’t
annotate these kind of events, we are removing the information that we are
interested in. So, we keep these kind of events in our event suggestion list, but

will try to distinguish and eliminate other generic events.

The extra events that TRIOS finds can be categorized as follows: i. the
result of wrong parse, ii. a generic event and iii. a legitimate event but missed

by annotators.

Here are few examples that we think are legitimate events and also missed

by TimeBank annotators:
An intense manhunt conducted by the FBI and the bureau of alcohol, ...

If Iraq chooses a simple war of nerves and economic attrition, the Bush

administration knows...

American strategists are calculating, though, that the trade sanctions —
enforced by an effective though perhaps undeclared naval blockade — will hold
tightly enough to conwvince Iraq that it will lose in the long run by simply

standing pat.
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We are interested in suggesting these legitimate events and filter out generic
and wrong events. The first level filtering is done by only keeping the events
that are suggested as Verbs by both TRIPS parser and also Stanford POS tag-
ger. Then the final filtering is done by classifying these extra events into “sug-
gestion” | “generic” and “wrong” categories. To do this task, we implemented
a MLN (markov logic network) classifier using TheBeast tool®>. We generated
the formulas for MLN from TRIOS generated event features. Flowchart for

suggesting new TRIOS events is shown in Figure 7.1.

To analyze, we picked 40 TimeBank documents and annotated the extra
TRIOS events with “suggestion”, “generic” and “wrong” categories. We used
20 documents as test data and other 20 documents as training data. Since
we did not have enough annotated data, we randomly picked some TimeBank
events as ‘“suggestion” instance and some non-verbal extra TRIOS events,
which were filtered out in our first level filtering, as “wrong” instances. We
added these new instances with our training data and then tested on our

unseen 20 documents.

In these 20 documents test data, we had 90 extra events after our first
level filtering, where we had 14 events which were result of the wrong parse,
41 generic events and 35 events that we think are legitimate events but missed
by TimeBank that we want to suggest. The performance of classifying these

categories are reported in Table 7.1.

In full TimeBank, we nominate 484 events as new event. From the sys-
tem’s performance, we expect that we extracted almost 90% of probable miss-
ing events and around 50% of these events are legitimate. These nominated

new events are small in number. Hence, suggestions from this tool will help

SMLN Tool TheBeast: http://code.google.com/p/thebeast/ . All MLN classifier in this

paper are implemented using TheBeast
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Figure 7.1: Flowchart to classify extra TRIOS events to “suggestion” ,

“generic” and “wrong” categories

significantly the annotator to add new events to TimeBank.

Category | # Instance | Precision | Recall

suggestion 35 50.00% | 88.57 %
generic 41 70.00% | 34.14%
wrong 14 87.57% | 50.00%

Table 7.1: Performance on classification of extra TRIOS events into “sugges-

tion”, “generic” and “wrong’

" category

7.1.2 Adding New Event Attribute - Ontology type

TimeML comprises of event attributes, class, tense, aspect, nf-morph, pos,

modality, and polarity. TRIOS system generates these attributes and also add

the ontology type as event attribute, which is later used as feature for relation
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classification task.

Ontology type is the semantic type of word, particular word sense in
the context, in the TRIPS ontology*. TimeML tries to capture the event
information by very high level class or pos. Ontology type attribute will try
to capture more fine grained information about the event, but in higher level

than event word.

An example will explain the granularity better. Ontology type instances for
“fought” in the sentence (example (4.1)) “He fought in the war” is FIGHTING.
Few other words with ontology type FIGHTING would be: contend, defend,
and struggle, i.e. these words with similar meaning will get the same ontology

type, in this case FIGHTING.

TRIPS Ontology will be available for public use, so people can use the
ontology for their system. It also has mapping to WordNet. So converting it

to WordNet classes, someone can take benefit of this ont-type attribute.

TRIOS system generates event attributes from TRIPS parser output. For
classifying the attribute class, we implemented a MLN classifier and used rest
of the event attribute as features for classifier. In this classification prob-
lem, our system with TRIOS generated attribute performed with 77.3%° and
the same system with TimeBank’s event attribute performed with 77.47% ac-
curacy. It is worth mentioning that TimeBank’s inter-annotator agreement
(IAG) on class is 77%. Comparing IAG and TimeBank’s feature, our perfor-
mance suggests that TRIOS generated features are equally good, which is an

indication of ontology-type’s performance as well.

4TRIPS ontology browser: http://www.cs.rochester.edu/ research /trips/lexicon/browse-

ont-lex.html

5 All performance for class identification are reported using 10-fold cross-validation.
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7.1.3 Suggesting New Temporal Expressions in Time-

Bank

We extract temporal expressions from raw text by making a hybrid between a
CRF-based engine and TRIPS extraction. For suggesting extra temporal ex-
pressions, we consider both systems, but do it slightly differently. We get the
temporal expressions suggested by both systems and compare with TimeBank.
Then we process the extra temporal expressions in a filtering step, which tries
to extract the normalized value for the temporal expressions. If the normaliza-
tion module gets a normalized value then we consider that temporal expression
as suggestion. The flowchart for suggesting new temporal expressions is shown

in Figure 7.2.

[ g;zlrpatsed ’ [ CRF generated j

tempexp tempexp

Tempexp from both
CRF and TRIPS
based systems

TimeBank
tempexp
Extra
temp exp

Filter
temp exp

Figure 7.2: Suggesting new temporal expressions

The inter-annotator agreement for temporal expression identification is
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96%, which means this is comparatively easy task for human annotators and
we do not expect the annotators to miss many temporal expressions. On full
TimeBank we suggested around 68 new temporal expressions, out of which,
we found 50 (73.5%) temporal expressions to be legitimate. We added these

new temporal expressions to the corpus. Some examples are shown below.

1. At the end of the broadcast this evening, one more trip around Havana

to see what it’s been like since the last time.

2. And even terrorist groups that opposed Iraq in its war with Iran show
signs of swinging behind Saddam Hussein now that he is in a confronta-

tion with the U. S. ...

3. Turks feel they have special ties to the whole region, which they ruled for

hundreds of years during the Ottoman Empire.

4. In the first days after President Bush announced the dispatching of U.

S. troops, ...

5. Weisfield’s, based in Seattle, Wash., currently operates 87 specialty jew-

elry stores in nine states.

6. Previously, watch imports were denied such duty-free treatment.

While the annotators did not miss any obvious dates, they missed some
temporal expressions like now, currently, last time, previously, which are identi-
fied by our system and suggested as new temporal expressions. Such temporal
expressions, although they have no specific temporal location as dates, helps
to capture better temporal structure and are also annotated in TimeBank in

general. Hence we want to suggest these new extra temporal expressions.



153

7.1.4 Adding Improved Relations in The Existing An-

notation Scheme

Our next contribution is adding a richer set of relations to TimeML. TimeML
captures the relations between different events with TLINK (temporal links),

SLINK (subordinate link), and ALINK (aspectual link).

More SLINK instances: SLINKs or Subordinate Links are used for re-
lations between two events. TimeML classifies SLINKs into Modal, Factive,
Counter-Factive, Evidential, Negative evidential and Conditional. This classi-
fication leaves out many instances where two events are related to each other,
i.e. one event is argument of another event. We try to capture all possible
relations when one event is related to another event. In following three ex-
amples from TimeBank corpus, we make one event in each sentence bold and
another underlined. The bold event is the core event and the underlined is
the reference event and the relation type (relType) is noted in the bracket
afterwards.

(1) Integra, which owns and operates hotels, said that Hallwood Group Inc.
has agreed to exercise any rights that aren’t exercised by other sharcholders.
(Theme)

(2) “They have to continue to tighten their belts,” said Craig Kloner, an

analyst at Goldman, Sachs amp Co. (Purpose)

We try to capture all these relations as SLINK and the relation type will be the
semantic role (or thematic roles). The most common semantic roles (relation
types) found in the corpus are shown in Table 7.2 along with comparison with

equivalent semantic roles from VerbNet and Lirics.

There are other kind of SLINKs that we consider. Another instance from

example (4.1) (He fought in the war) is:

<SLINK signal=IN eventInstanceID=V2 subordinatedEventInstance=V5
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Our Role VerbNet equivalent | Lirics equivalent | SLINK Count | RLINK Count
Agent Agent, Actor Agent 19 709
Theme Stimulus, Theme Theme 336 1137
Affected Patient Patient 13 92
Cause Cause Cause 49
Goal-as-Loc | Destination finalLocation A7

To-Loc Recipient Goal 46

At-Loc Location Location 42

In-Loc Location Location 28

On Location Location 20

Situated-In | Location? Location? 39

Purpose - Purpose 226

Table 7.2: Most common relTypes used in SLINKs and RLINKSs

relType=SITUATED-IN>

We also try to capture the signal (connectives, that connects two events).

The problem in these cases is identifying the relation type (relType). We

decided to use the ontology type of our signal (connective) as the relType for

these kinds of extra SLINKSs.

We suggest around 900 SLINKSs to TimeBank corpus. Table 7.2 shows the

statistics of most frequent SLINK types that we suggested.

New Relation Link, RLINK: Many researchers (Chambers et al., 2007

(CWJO0T7)), (Yoshikawa et al., 2009 (YRAMO09)) showed that having depen-
dency information improves the performance for extracting temporal relations.
They tried to capture the dependency relation with dependency parsers like
Stanford dependency parser. This gives a hint that capturing how other de-

pendent words are connected with the event will enrich the information about
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the event.

We introduce new relation link, RLINK, to capture what other objects
are related to the event (other than another event, which is captured with

SLINKS), i.e. relation of event with its arguments.

In our initial example, for event FIGHT, we try to capture the information
that the AGENT of that fighting event is HE, which is a PERSON. These
relations give us information what are the arguments of an event and how

they are connected.

<RLINK eventInstanceID=V2 ref-word=HE ref-ont-type=PERSON
relType=AGENT>

We considered the thematic/semantic roles that described in Table 7.2. In
TRIOS-TimeBank corpus we suggest around 2000 RLINKs. We showed the
distribution in Table 7.2.

Another example of RLINK’s importance could be explained with (Cham-
bers and Jurafsky, 2008) (CJ08). They learned narrative event chains consid-
ering the idea of protagonist (central actor). They are basically considering the
events performed by the same agent. We are trying to capture the agent and
other different thematic roles (or semantic roles) using RLINK, which would

help many other applications like Chambers and Jurafsky (2008).

One argument against adding RLINK is, these information could be an-
notated with other layers, such as syntactic and semantic layers. We agree
that this information could be added using other layers, however, for building
a complete temporally aware system we would need these information. Hence
to build a complete temporally annotated corpus it is better to have this in-
formation as well. This would benefit advanced applications, such as question

answering, summarization, etc.
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7.2 Merging Multiple Temporal Annotations

In another effort, we explore whether or not the correctness of temporal an-
notations can be improved by merging multiple annotations using automated
algorithms. Our hypothesis is that merging annotations may benefit in many

different ways, such as:

1. Improving over the performance of individual automated systems in var-

ious ways.

e Building a high recall system: If we take different systems, one
system can fail to extract some elements and the other system can
have better coverage for those particular elements. By merging,
the missing elements of one system can be covered by another; as

a result we can achieve a high recall system.

e Building a high precision system: By taking votes from multiple
systems, we can ignore some low-confidence information to build a

high precision system.

e Building an overall better system (balanced precision and recall):
Increasing the recall by combining all system output will decrease
the precision and increasing the precision by ignoring low-confidence
information will decrease the recall. However, a balanced combina-

tion may help to improve performance in general.
2. Automatically or semi-automatically annotating temporal corpora.

e Merging different human annotations: When we have different hu-
man annotations, it is hard to merge them manually. An automated

merger can be used to merge the output easily.
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e Increasing human annotation coverage: Temporal annotation is a
hard task even for humans®. Human annotators can often miss
some useful information. By merging human annotation with state-

of-the-art automated annotations, we can increase the coverage.

e Annotating large corpora: Finally, with merging algorithms that
improve over state-of-the-art systems, we can automatically anno-
tate a large corpus that could not be annotated by manual means.
In addition, if we use high recall merging, it can be easily improved

with human review mainly by removing information.

The underlying difficulty of merging annotations is that it cannot be en-
sured that the result will be better than the individual annotations. When
merging annotations it is unknown whether or not an annotated element is
correct. It is crucial therefore that the merging algorithms use some heuristics

to merge different elements.

In this section, we propose and develop algorithms to merge multiple tem-
poral annotations. To get a better merging, the algorithms consider the sys-
tem/annotator performance and the temporal annotation particularities (e.g.,
temporal relation consistency). We evaluate the performance of the proposed
merging algorithms and discuss how merging can be used to achieve the ben-

efits introduced above.

This section is structured as follows. First, we describe different merging
techniques employed in various natural language processing (NLP) applica-
tions. Next, we present our merging algorithms. Finally, we report and discuss

our experimental results and draw the conclusions reached.

6Find the inter-annotator agreement of TimeBank corpus at: http://timeml.org/

site/timebank/documentation-1.2.html#iaa


http://timeml.org/site/timebank/documentation-1.2.html#iaa
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7.2.1 Related work

In NLP, a range of merging techniques have been employed for improving

different tasks such as part-of-speech tagging or syntactic parsing.

Sjobergh (Sj03) and Brill & Wu (BW98) combined different POS-taggers.
Reidel et al. (RMS*11) combined bio-molecular event extraction systems.

Swift et al. (SAG04) combined parsing output from different sources.

The techniques used in these papers are:

e Simple voting: this is the most common technique (Sj03; BW9S8). This

is equivalent to weighted voting using same weight for all the inputs.

e Weighted voting: this normally involves giving higher weights to better
systems. Sometimes the systems also output confidence score for each
individual prediction. These scores for predictions have been also used

as weights for voting (Sj03).

e Stacked merging: there are two main approaches for stacked merging:
(i) using the output of one system as input feature of another system
(SAGO4; RMS™11); and (ii) taking all system outputs and training a

new model with these outputs (Sj03).

In our merging, we exploit simple and weighted voting techniques with
specific heuristics to merge temporal annotations. Due to the complexity of

temporal annotation, we did not explore stacked merging.

7.2.2 Merging Temporal Annotations

Our goal is to take a set of TimeML annotations of the same text from different
sources — either automated systems, human annotators, or both — and auto-

matically obtain a merged annotation. In particular, we aim to get a merged
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annotation which is better than individual annotations in terms of correct-
ness, i.e., get the correctly annotated elements of the annotations and avoid
the incorrect ones. Since it is unknown which elements of each annotation
are correct, the problem is to find heuristics useful, in particular, for merging

temporal annotations.

We present two approaches to this problem: bottom-up and top-down.
Each approach is defined based on how the elements in the annotation are
merged. Bottom-up first merges the entities (events and temporal expressions)
from all the sources and then merges the temporal relations from the sources
that contain those entities. Top-down merges the temporal relations first and

then based on the merged temporal relations, the entities.

In both approaches, we use voting to decide which elements to keep in
the merged annotation. In particular, we use weighted voting to be able to
give higher weights to better sources to ensure that a priori better annotations
are preferred. We only include an element in the merged annotation if its
voting is above a threshold (merging threshold). The thresholds, for entities
and relations, are customizable in our algorithms, i.e., these can be modified
to setup different merging configurations (e.g., threshold 0% is equivalent to

unifying all annotations or threshold 50% to selecting by majority).

Before running the merging algorithms we normalize the annotated ele-
ments. TimeML annotation output from different sources may have different
elements (e.g., annotation A has an event which is missed in annotation B).
In order to merge annotations we first need to identify which elements are
the same in different annotations. We therefore developed an algorithm which

gives the same id to the same elements from different sources.

Entity normalization: We consider entities to be the same when there is a

partial overlapping of the text between entities of two different sources, e.g.

if one source identifies Sunday and another source identifies Sunday morning,
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we will identify both of these as same entity. In order to carry out this task,

the algorithm uses the entity position in text.

Relation normalization: A temporal relation links two entities with a re-

lation type. We give the same id to the relations from different sources that
relate the same two entities (i.e., with the same id). If the entities are related
in different order, e.g. one source has el e2 rl and another source has e2 el

reverse(rl), then we will make both el e2 rl.

Normalized TimeML annotations from different sources are the input of

our merging algorithms.

Bottom-up merging

Merging entities: In bottom-up, entities are merged first. We consider the
weighted votes from all annotations to decide if an entity is kept or not. We
keep the entity if the voting is above a predefined threshold. The approach to
select the entities and their main attribute values” is explained in Algorithm 1.
In the case of multi-token entities, the algorithm also selects the extent of the
entities — tokens included in the entity. Since obtaining the correct attribute
value often requires considering the correct entity extent, for each entity, after
selecting which attribute value to keep in the merged annotation,the algorithm

checks which sources suggested that attribute value and selects the extent and

"Main attribute is class for events and value for timex.
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other attributes by voting only from these sources.

foreach entity e € entities do
foreach source s € sources do
L if e € s then
| entity_weight[e] += w]s]
merged_entities = {}
foreach entity e € entities do

foreach source s € sources do
if e € s and entity_ weight[e] > threshold

and e ¢ merged_entities then
L value = get_attribute_value(e, attribute, s)

attribute value weight[e][value] += w[s] merged_entities.append(e)

Algorithm 1: Calculating weight for entities
Merging relations: After getting the merged entities from Algorithm 1,

we merge, from all sources, the relations which link those entities. In order
to merge them we distinguish two matching levels: triples and doubles. We
define relation triple as entityl entity2 relation_type (complete match) and
relation double as entityl entity2 (only entities match). We use triples and
doubles to calculate the weighted voting as described in Algorithm 2. Doubles
are useful because they represent when two entities are related, but triples are
much more important because they represent how they are related. In the
algorithm, to sort relations in terms of triple weights first and then double

weights, given n sources, we multiply triple weights by (n+1). This gives more
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weight to one triple than n doubles.

foreach triple t € relations do
foreach source s € sources do

if t € s then
weight_triple[t] += w[s] * (n+1)
d = get_double_from _triple(t)
weight_double[d] += w]s]

foreach triple t € relations do
d = get_double_from_triple(t)

| relation_weight[t] = weight_triple[t] + weight_double[d]
merged_relations = {}
foreach triple t € relations do

if relation_weightt] > threshold and consistent(t) then
| merged_relations.append(t)

Algorithm 2: Calculating the weight for relations

Example (1) illustrates how the algorithm merges the relations from three

sources (S1, S2, S3) with different weights.

(1) w[S1] =4, w[S2]=3, w[S3] = 2

triples[S1]: {el, e2, BEFORE}, {e2, t1, AFTER}
triples[S2]: {el, e2, BEFORE}, {e2, t1, ENDS}
triples[S3]: {el, e2, AFTER}, {e5, e6, AFTER}
relation_weight[{el, 2, BEFORE}] =

(w[S1]+ w([S2])*4 + w[S1] + w[S2] + w[S3] = 37
relation_weight[{e2, t1, AFTER}] =

w[S1]*4 + w[S1]4+w[S2] = 23
relation_weight[{e2, t1, ENDS}] =

w[S2]*4 + w[S1]+ w[S2] = 19
relation_weight[{el, €2, AFTER}] =

w[S3]*4 4+ w[S1] + w[S2] + w[S3] = 17
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relation_weight[{e5, e6, AFTER}] = w[S3]*4 + w[S3] = 10

With Algorithm 2, we will get a sorted list of relations, i.e. highly voted
relations on top. This allows removing the less voted inconsistent ones. We as-
sume that temporal annotations should be consistent and thus also the merging

output.®

To check temporal consistency we need to calculate the temporal closure.
This is a computationally complex task. Our merging algorithms check tem-
poral consistency using Timegraph (section 5.3.1), which creates a temporal

structure in which temporal consistency can be efficiently checked.

The less voted relations that are inconsistent with the already added rela-
tions (more voted) are eliminated from the list. Finally, the consistent merged
relations that are above the established merging threshold are included in the

merged output.

Top-down merging

The top-down merging approach first merges the temporal relations. We apply
the same algorithm described for bottom-up merging in Algorithm 2, but
instead of starting with relations of merged entities, we start with all relations
from all sources. For merging entities, we by-default include the entities that
participate in the merged relations. For the rest of the entities, we apply the

entity merging approach described in Algorithm 1.

8Even knowing that some gold standard annotations are erroneously inconsistent in terms

of closure.
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7.2.3 Evaluation and Discussion

In this section, at first, we describe the corpora, the annotation sources, and
the evaluation metrics that we used for our experiments. Finally, we present

and discuss the results.

Corpora

We consider TimeBank 1.2 and AQUAINT?, which are the available TimeML
compliant corpora. We use both corpora together and we perform 10-fold cross
validation for all the experiments, i.e., we report the mean of 10 complementary

experiments using 90% training and 10% test.

Annotations being Merged

We take as annotation sources three systems from TempEval-2, which partic-
ipated in all the tasks and obtained the best scores. These are TIPSem and
TIPSemB (LSNC10); and TRIOS (described in section 4). In order to obtain
TimeML annotations from raw text with these systems, we extended them
in two respects: (i) we added a module to identify which entities to pair for
temporal relations; and (ii) we trained the relation categorization model on
the full set of TimeML relations — as annotated in TimeBank and AQUAINT-

instead of the reduced set used in TempEval-2.

Evaluation Metric

The evaluations can be divided into entity evaluation (for events and temporal

expressions) and relation evaluation.

To evaluate the entity performance, we consider the entity based evaluation

(equation 3.1 — detail in section 3.3.1).

http://timeml.org/site/timebank/


http://timeml.org/site/timebank/
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For attributes, we report the attribute recall (equation 3.6). In TempEval-
2, the attribute performance was reported as attribute accuracy — calculated
as the matching attributes out of matching reference and system entities. If
an annotation matched only only one entity and gets its attribute correct,
then it gets 100% accuracy; just as one annotation that has matched all the
entities and attributes. This makes comparing attribute performance between
annotations difficult. In order to make comparison easier, we used the attribute
recall — calculated as the number of matching attributes and entities out of
total reference entities. Attribute recall is equivalent to the multiplication of

entity recall and attribute accuracy.

To evaluate the performance of temporal relations, we proposed an eval-
uation metric in section 6.1.3. Our metric has been adopted to evaluate the
participants of TempEval-3, identifying temporal relations. This metric cap-
tures the temporal awareness of an annotation in terms of Precision, Recall
and F score. Unlike TempEval-2 relation score, where only relation categoriza-
tion is evaluated, this metric evaluates how well pairs of entities are identified,
how well the relations are categorized, and how well the events and temporal

expressions are extracted.

Results and Discussions

The objective of this evaluation is to analyze whether or not the application
of our algorithms leads to a merged temporal annotation which is better than

the individual annotations used to obtain it.

We evaluate various voting configurations for merging annotated elements.
Each configuration sets a voting threshold which has to be reached by an
element to be kept in the merged annotation. In some experiments we use
weighted voting — not all the annotation sources have the same weight. In

order to assign weights to individual annotations, we measured their temporal
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awareness F score in a separated subset of the data (TempEval-2 test docu-
ments in TimeBank). When it is needed, we use their performance as weight,

i.e., 32% for TIPSem, 29% for TIPSemB, and 27% for TRIOS.

As baseline configurations, we consider union and intersection. In union,
all the annotations have the same weight (33%) and the threshold is 0%, i.e.,
only 1 vote is required and then all the elements are kept. In intersection, all
the annotations have the same weight (33%) and the threshold is 99.9%, i.e.,

all the votes are needed to keep an element.

We suggest three merging configurations. Firstly, majority (MAJ), where
we give same weight to all annotations (33% — simple voting); and the thresh-
old is set to 50%, i.e., majority is required (2 votes). Secondly, performance
(PERF), where we give each annotation expected correctness (system perfor-
mance) as the weight and the threshold is set to the lowest weight (27%).
In this configuration, we give preference to the better annotations as regards
their performance. Finally, balanced (BLNC), where we give the best annota-
tion its performance as weight (32%) and the other annotations a lower and
equal weight (27%); the threshold here is also the lowest weight (27%). In this
configuration we give preference to the best annotation and for the rest we

require at least 2 votes to include their elements in the merged annotation.

In PERF and BLNC, we expect a better balance between precision and
recall because these will include the majority of the elements of the better
annotation and only those elements of the worst annotations that get some

support (more than one vote).

Below we report on the results for the bottom-up approach for event, timex,
and relation merging. For each of the cases, we compare the performance of
our different merging approaches against baselines, and then we compare the
results of the individual annotations (systems) against the PERF approach,

which obtained the best average results.
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EVENT: For event extraction, our PERF configuration obtained the best
results, closely followed by BLNC. All our merging configurations are also

better than our baselines. Performance in F1 is reported in Table 7.3.

union intersection MAJ BLNC PERF
F1 84.9 64.6 85.1 86.7 86.9

Table 7.3: Merging performance for event extraction

Furthermore both PERF and BLNC outperform all individual annotations

that we merge. Performance in F1 is reported in Table 7.4.

TIPSem TIPSemB TRIOS PERF
F1 86.6 85.5 75.1 86.9

Table 7.4: Systems vs. PERF merging for event extraction

The mean positive difference in the 10-folds between PERF and TIPSem
was 0.10 with a mean standard deviation of 0.07, which supports our hypoth-

esis that merged annotation improves over individual annotations.

TIMEX: For timex extraction, PERF performed the best among our con-
figurations, closely followed by BLNC. However, the union baseline obtained
the best results for timex extraction task. This is due to the fact that, in
general, union obtains high recall and it can get high F1 if it can maintain a
high precision at the same time. For timex extraction, individual systems have
high precision and then union performs very well. The F1 of the baselines and
our merging configurations are reported in Table 7.5 and a further details for

union are discussed in the next subsection in Table 7.10.

Both PERF and BLNC outperform all individual systems that we merge.

Performance in F1 is reported in Table 7.6.
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union intersection MAJ BLNC PERF
F1 91.6 60.6 86.1 89.4 89.5

Table 7.5: Merging performance for timex extraction

TIPSem TIPSemB TRIOS PERF
F1 88.3 86.1 86.0 89.5

Table 7.6: Systems vs. PERF merging for timex extraction

The mean positive difference between PERF and TIPSem was 0.10 with a
mean standard deviation of 0.08, which supports our hypothesis that merging

improves also in timex annotation.

RELATIONS: For relations (temporal awareness), our BLNC configuration
performed the best. MAJ performed better than PERF here, which we will
explain in detail later. All our merging configurations are better than our

baselines in temporal awareness. Performance in F1 is reported in Table 7.7.

union intersection MAJ BLNC PERF
F1 29.35 16.98 30.90 31.38 30.65

Table 7.7: Merging performance for temporal awareness

All our merging configurations outperform all the individual annotations

that we merge. Performance in F1 is reported in Table 7.8.

For temporal awareness, the mean positive difference in the 10-fold between
the best system (TIPSem) and PERF was 0.15 with a mean standard deviation
of 0.03.

DETAILED EXPERIMENTS: We also report the detailed scores to better

analyze the merging results.

EVENT: We detail the event performance of best individual system (TIPSem)

and average best merging configurations (BLNC, PERF). For event attributes
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TIPSem TIPSemB TRIOS PERF
F1 29.59 28.41 24.75 30.65

Table 7.8: Systems vs. PERF merging for temporal awareness

(class recall), both our best merging configurations outperform TIPSem. Table
7.9 includes event precision (P), recall (R), fscore (F1), class accuracy (class

ac) and class recall (class R).

P R F1 class accuracy class Recall
TIPSem 87.5 85.7 86.6 82.7 70.8
BLNC 87.0 86.5 86.7 82.8 71.6
PERF 85.8 88.0 86.9 82.7 72.8

Table 7.9: Detail event performance for best individual system and best merg-

ing configurations

TIMEX: In this case it is worth examining the UNION baseline in addition to
the best individual system (TIPSem) and best merging configurations (PERF,
BLNC). In timex attribute (value recall), both our best merging configurations
outperform the best individual system; and UNION performs the best as it is
shown in Table 7.10.

P R F1 class accuracy class Recall
TIPSem 94.6 82.8 88.3 70.5 58.4
PERF 93.9 85.7 89.5 1.7 61.4
BLNC 94.7 84.7 894 72.0 61.0
UNION 91.0 924 916 70.2 64.9

Table 7.10: Detail timex performance for best individual system and best

merging configurations

Since the precision of the annotations being merged is high the key point

for timex is improving recall. The best way to do so is by a union merging.
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RELATIONS: Table 7.11 shows the detail temporal awareness performance

of best individual system (TIPSem) and all the merging configurations.

P R F1
TIPSem 26.46 33.62 29.59
BLNC 28.68 34.71 31.38
PERF 26.55 36.35 30.65
MAJ 35.27 27.54 30.90

Table 7.11: Detail temporal awareness performance for best individual system

and best merging configurations

Table 7.7 showed previously that MAJ performs the second best. But we
can get the insight from Table 7.11 that the improvement was due to high
precision. Table 7.11 also shows the strengths of each of our configurations.
MAJ has high precision, PERF has high recall and BLNC is a good balance
between precision and recall. Depending on the need, we can use the best

configuration for our purpose to get the best out of our merging algorithms.

ADDITIONAL EXPERIMENTS: We did few additional experiments to

make a better analysis.

Experiment 1: We checked if merging only two systems, instead of three,
still improves over individual systems. We experimented the merging of two
systems in PERF configuration, which is equivalent to BLNC when merging

only two systems. The results are reported in Table 7.12.

TIPSemB-TRIOS TIPSem-TIPSemB TIPSem-TRIOS
F1 30.12 31.15 31.33

Table 7.12: Performance of merging two systems

In all two-system combinations we have found that our merged annotations

outperform the individual best system. TIPSem and TIPSemB are the two
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best individual systems. It could be expected that their combination would
lead to the best result. However, TTPSem-TRIOS combination performed
better. This is because TIPSem and TRIOS are the most different systems
and their annotations are more complementary (better for merging), while

TIPSemB is a variant of TIPSem and their annotations are more similar.

Experiment 2: We repeated all the previous experiments using top-down
approach, but we did not find any notable differences for any task between

top-down and bottom-up. The comparison temporal awareness is reported in

Table 7.13.

MAJ BLNC PERF
Bottom-up  30.9 31.38 30.65
Top-down 31.23 31.18 30.52

Table 7.13: Comparison between top-down and bottom-up

Experiment 3: For all the experiments, we only considered the relations
that are consistent, i.e. maintains the closure property. We evaluated our
configurations keeping all the relations, i.e. including inconsistent relations.

The performance is reported in Table 7.14.

MAJ BLNC PERF
without inconsistent 28.68 34.71 31.38

with inconsistent 27.09 35.25 30.60

Table 7.14: Performance with/without inconsistent relations for BLNC

We found a slightly better recall when including inconsistent relations since
we are considering more relations, but overall performance decreases because

of lower precision.
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7.2.4 Summary

We showed that our merging algorithms improve the performance over individ-
ual annotations. We also showed that using different merging configurations,

we can achieve high recall, high precision and balanced annotations.

7.3 TempEval-3

In this section we describe the contributions of this thesis for TempEval-3'°
(ULAT12). We start by describing the TempEval-3 shared task and then we

explain our preparations for the task.

7.3.1 TempEval-3 Shared Task

Temporal annotation is a time-consuming task for humans, which has limited
the size of annotated data in the previous editions of TempEval. Current
systems, however, are performing close to the inter-annotator reliability, which
suggests that a larger corpus could be built from the automatically annotated
data with minor human reviews. We want to explore whether there is value
in adding an automatically created large silver standard data to a small hand-
crafted gold standard data. An auto-annotated larger corpus could be more
useful than a small hand annotated corpus for some tasks. With this in mind,

we propose the upcoming temporal evaluation shared task — TempEval-3.

TempEval-3 is a follow-up of TempEval 1 and 2. TempEval-3 is different
from its predecessors in a few respects: (i) size of the corpus: the dataset
will have about % million word silver standard data, and about 100K word

gold standard data for training, compared to around 50K word data used in

Onttp://www.cs.york.ac.uk/semeval-2013/task1/
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TempEval 1 and 2; (ii) temporal relation task: the temporal relation classi-
fication tasks will be performed from raw text, i.e. participants need to first
extract events and temporal expressions, determine which ones to link, and
then obtain the relation types; (iii) temporal relation types: the full set of
temporal relations in TimeML will be used, rather than the reduced set used
in earlier TempEvals; (iv) annotation: most of the corpus will be automati-
cally annotated by the state-of-the-art systems from TempEval-2, a portion
of the corpus, including the test dataset, will be human reviewed; and (v)
evaluation: we will report a temporal awareness score to evaluate temporal

relations, which would help to rank systems with a single score.

7.3.2 Temporal Evaluation Shared Task 2013 -
TempEval-3 Tasks

The proposed tasks for TempEval-3 are:

e Task A (Temporal expression extraction and normalization):
Determine the extent of the time expressions in text as defined by
TimeML’s TIMEX3 tag. In addition, determine the value of the fea-
tures TYPE and VALUE. TYPE can be time, date, duration, and set;
and VALUE is a normalized value as defined by TIMEX2 and TIMEX3

standards.

e Task B (Event extraction): Determine the extent of the events in
a text as defined by TimeML’s EVENT tag. In addition, determine
the value of the features CLASS, TENSE, ASPECT, POLARITY and
MODALITY, and also identify if the event is a main event.

e Task C (Identifying temporal relations): Identify the pairs of tem-

poral entities (events or temporal expressions) that have temporal re-
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lations, and classify those relations. Possible pairs of entities that can
have temporal relations are: (i) main events of consecutive sentences, (ii)
pairs of events in the same sentence, (iii) event and temporal expressions
in the same sentence, and (iv) event and document creation time. Now
the participating systems need to identify the entities that need to be
paired. The relation labels will be the same as the original TimeML’s
relations: before, after, includes, is-included, during, simultaneous, im-
mediately after, immediately before, identity, begins, ends, begun-by and

ended-by.

Participants may choose to do task A, B, or C. Choosing task C entails
doing task A and B. However, a participant may perform only task C by
applying available tools to carry out tasks A and B.

7.3.3 TempEval-3 Datasets

For TempEval-3, we reviewed and modified the existing corpora, and released

the new corpora.

Reviewing the Existing Corpora

We review the existing TimeBank (PHST03), TempEval-1 (VGST07),
TempEval-2 (VSCP10) and AQUAINT! for TempEval-3.  TimeBank,
TempEval-1 and TempEval-2 had the same documents, but different relation

types and sometimes different set of events. We will refer to this corpus as

TimeBank.

For both TimeBank and AQUAINT, we (i) cleaned up the formatting
of all files making it easy to review and read, (ii) made all the files XML

Uhttp://timeml.org/site/timebank/
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and TimeML schema compatible, (iii) added the missing events and temporal
expressions. In AQUAINT, we added the temporal relations between event
and DCT (document creation time), which were missing for many documents
in that corpus. In TimeBank, we (i) borrowed the events from the TempEval-
2 corpus and (ii) borrowed the full-set of temporal relations from TimeBank

corpus.

Automatically Creating New Large Corpora

We collected the % million word corpus from Gigaword corpus'?. We automat-
ically annotated this corpus with TIPSem, TTPSem-B (LSNC10) and TRIOS
(described in section 4). These systems were retrained on the TimeBank and
AQUAINT corpora to generate the original TimeML temporal relation set.
We then merged these three state-of-the-art system outputs using our merg-
ing algorithm (section 7.2). In our selected merging configuration, all entities
and relations suggested by the best system (TIPSem) are added in the merged
output. Suggestions from other systems (TRIOS and TIPSem-B) are added
in the merged output, only if they are supported by another system. The
weights considered in our selected configuration are: TIPSem 0.36, TIPSemB
0.32, and TRIOS 0.32. This automatically created corpus is referred to as
silver data. A portion of the silver data is in the process of human revision to

release it as an additional gold training data.
Our released corpora will consist of the sections described in Table 7.15.
* revision in process.

The participants and future researchers can explore the benefits of both
— large automatically temporally annotated corpora (silver data) and small

human annotated/reviewed temporal annotated corpora (gold data) — with

2http://www.ldc.upenn.edu/Catalog/catalogEntry. jsp?catalogId=LDC2011T07
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Corpus Number of words  Purpose  Standard
TimeBank 61418  Training Gold
AQUAINT 33973  Training Gold
TempEval-3 Silver 666309  Training Silver
TempEval-3 Gold *20000  Training Gold
TempEVal-3 Evaluation *20000 Evaluation Gold

Table 7.15: Available corpus released for TempEval-3

our TempEval-3 release.

7.3.4 Evaluating Participating Systems

To evaluate the entity performance on tasks A and B, we will consider the en-
tity based evaluation (equation 3.1 — detail in section 3.3.1). For the attributes,

we will report the attribute F score (equation 3.6 and 3.7).

The evaluation on task C will be incorporated from our proposed evaluation
metric (section 6.1.3). Our metric uses temporal closures to reward relations
that are equivalent but distinct, and then finds precision and recall. We showed
that our F-score represents the overall temporal awareness of a system (i.e. it
evaluates how a system extracts events, temporal expressions and identifies

temporal relations).

7.4 Summary

This chapter describe the contribution of this thesis in improving the existing
temporal resources. At first we present the TRIOS-TimeBank corpus, an
extended TimeBank corpus with additional semantic information. We suggest

additional TimeBank events, propose an extension to the TimeML language
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with richer event features, and event relations, all of which we generate using
semantic parsing. The TRIOS-TimeBank corpus, with newly added events,
event feature and relations, is available to the community for further research

on temporal reasoning.

Next, we present algorithms to merge multiple temporal annotations. We
discover that our merged annotations have an improved performance over that
of the individual ones. We also demonstrate that by using different merging
configurations, we can achieve high recall, high precision and balanced anno-

tations.

In the experiments, we merged three state-of-the-art system annotations,
and our merged annotation perform better than the state-of-the-art system an-
notations. The improvement found in the merged annotation is not significant
but the annotations are always improved. Since we expect an improvement,
we conclude that the merging is worthy even if it only slightly improves the

annotations.

Finally, we describe TempEval-3 Shared Task and its different components.
This dissertation contribute to TempEval-3 Shared Task by defining the task
descriptions, by reviewing the existing corpora, by automatically creating the
new large corpora, and by proposing the evaluation metric to evaluate the

participants.
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8 Conclusion

This chapter describes the contributions of this thesis and the possible future

directions of this research work.

8.1 Contributions

This thesis focuses on understanding the temporal information in natural lan-
guage. This involves automatic extraction, interpretation and reasoning about
the temporal aspects of language. Such capabilities are key to many advanced
natural language processing (NLP) applications, such as question answering,
information extraction, document summarization and dialog systems. These

techniques can be applied in news, medical, history and other domains.

The research on temporal information understanding evolved from the ra-
tionalist formal strategies (Chapter 2), proposed by the Linguistics and the Ar-
tificial Intelligence community, to the empiricist corpus-based strategy (Chap-
ter 3) put forth by the Corpus Linguistics community. Having been influenced
by both approaches, we proposed in this dissertation a hybrid system (in
Chapter 4) to automatically extract temporal information from raw texts by

extracting the events, the temporal expressions and identifying the temporal
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relations between them.

Our system for extracting the temporal information uses a combina-
tion of deep semantic parsing and machine learning classifiers. We compared
our system with the existing systems performing the same task on TimeBank
(PHS'03) and TempEval (VGST07), (VSCP10) corpora. Our system outper-

forms or performs comparably with the existing systems.

We utilized our system that automatically extracts temporal information
to build a temporal structure (section 5.3) using a Timegraph (section
5.3.1). Our temporal structure can answer how two entities are related to
each other by making temporal inferences even when the relations are not
explicitly mentioned. Finally, using the temporal structure, we presented a
question-answering system (section 5.4), capable of temporal reasoning.
Since our system is generic, it can be used to answer temporal questions about

any document annotated in TimeML.

Next, to evaluate automated systems extracting temporal information, we
proposed a new temporal evaluation metric (section 6.1) that considers
semantically similar, but distinct, temporal relations and consequently gives
a single score that could be used to identify the overall temporal awareness
of a system. Our approach is intuitive and easy to implement. We imple-
mented the metric using a Timegraph for handling temporal closure in the
TimeML derived corpora, which makes the implementation scalable and com-
putationally inexpensive. Our proposed metric has been adopted to evaluate

the participants in TempEval-3.

Then we proposed the evaluation of temporal information under-
standing (section 6.2) with temporal question-answering. Our proposal is
motivated by the benefits inherent in the use of QA to assess the understand-
ing of natural language. The benefits of using temporal QA for temporal

information understanding are: (i) QA represents a task-focused way of eval-
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uation, which is natural and simple for humans; (ii) it is much easier to create
temporal questions (needed to evaluate temporal information by QA) than
annotating new documents with temporal information (needed to evaluate by
corpus). Hence, the evaluation by QA allows creation of a larger test set more
easily. (iii) moreover, QA allows the evaluation of temporal understanding
in other domains as well, which enables the testing of the generality of the

systems.

Next, we described the contribution of this thesis in improving
the existing temporal resources (Chapter 7). At first, we presented
the TRIOS-TimeBank corpus, an extended TimeBank corpus with additional
events. We also proposed an extension to TimeML language with a richer
event feature and event relations, all of which we generated with the help of
deep understanding of text using semantic parsing. This resource, the TRIOS-
TimeBank corpus, with the newly added events, the event feature and rela-

tions, is available to the community for further research on temporal reasoning.

Then we presented algorithms to merge multiple temporal annotations.
We showed that our merged annotations have an improved performance over
that of the individual ones. We also demonstrated that by using different
merging configurations, we can achieve high recall, high precision and balanced

annotations.

Finally, we described the TempEval-3 Shared Task and its different compo-
nents. This dissertation contributed to TempEval-3 Shared Task by defining
the task descriptions, by reviewing the existing corpora, by automatically cre-
ating the new large corpora, and by proposing the evaluation metric to evaluate

the participants.
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8.2 Future Work

8.2.1 Temporal Visualization or Timeline — Making in-

formation accessible

This dissertation presented the systems to extract temporal information and
to answer temporal questions. The next step would be to create the temporal
visualization or the timeline of a document to quickly sketch a summary of
the document. This visualization to create a summary document could benefit
a diverse group of people with reading difficulties — e.g. people whose first
language is not English, individuals with low literacy, children, older people
— and even those who want to quickly skim the document. We present a
diagram in Figure 8.1 that we suggest for temporal visualization. However,
this diagram mainly visualizes before and after relations. It becomes very

complicated when all the relations (Table 2.3) are considered.

There is existing research on temporal visualization, e.g. Time-Surfer by
Llorens et al. (2011) (LSNG11) and TBox by Verhagen (2007) (Ver07). How-
ever, these existing temporal visualizations are not detailed enough. On the
other hand, visualizing fine grained temporal relations for all pairs of rela-
tions together is a big challenge due to the excessive amount of information,
and finding a good balance of granularity is another difficult task. Future

researchers can explore this area.

To make the visualization more appealing and more useful to a wider
audience, illustrations can be added in the visualization as well (UBA10b)
(UBA10a). Our existing work on Multimodal Summarization (UBA11) can
be used to illustrate the complex sentences in a simplified form as an entity
node, and the temporal visualization can show how all entity nodes are related

to each other in terms of time. We present a diagram in Figure 8.2 that we
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1492 Christopher Columbus  reached  Caribbean islands

April 2, 1513 Juan Ponce de Le6n landed La Florida

\\ documented first European arrival

\
Spanish settlements landed southwestern United States
drew thousands through Mexico

French fur traders established outposts of New France

/‘7&\

— France claimed much of the North American interior

first successful English settlements  were  Virginia Colony in Jamestown

along the lower Hudson River,

Dutch settled including New Amsterdam on Manhattan Island.

first successful English settlements  were Pilgrims' Plymouth Colony

chartering of the Massachusetts Bay Colony  resulted migration

1634

10,000 Puritans settled New England

American

Revolution | 50,000 convicts  shipped  Britain's American colonies |

Figure 8.1: Temporal Visualization of a section of a Wikipedia article on

Christopher Columbus
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suggest for temporal visualization with illustration.

A visualization with illustration also bears similar challenges due to the
excessive information, and due to the difficulty in finding a good balance in
granularity. One solution is to start with the minimum information, such as
existing temporal visualization techniques (LSNG11), and then deliver more

detailed information on demand.

8.2.2 Temporal Summary, Visualization and QA Sys-

tem

In this dissertation we have presented the ground work for building advanced
NLP applications with temporal information processing. Future researchers
can extend the work to build an application that can produce a temporal sum-
mary in text and a visualization at the same time for a document with the
temporal QA capability. This combined application would be very useful for
many people, such as doctors to understand and inquire about patients’ his-
torical records in medical NLP domains, for students/children to understand
and learn history in education domains, for people with reading disabilities to

follow news articles, and for many others as well.

8.2.3 Future Temporal Evaluation Shared Task - Tem-

pEval

TempEval has been the driving force behind the temporal information process-
ing community. The first TempEval (VGST07) provided participants with all
entity attributes and evaluated participants with the temporal relation classifi-
cation task. The next TempEval (VSCP10) had different subtasks to evaluate

participants on entity extraction and relation classification tasks. The upcom-
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Figure 8.2: Temporal Visualization with illustration of a section of a Wikipedia
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ing TempEval® (section 7.3) will provide only the raw text and will require
the participants to annotate the text with temporal information, which in-
cludes extracting entities, identifying paired entities with temporal relations,

and finally classifying the temporal relations.

The initial goal of TimeML (PCIT03) temporal annotation scheme was
to assist the Question Answering (QA) task. In the last few years, due to
the complexity of the task, the focus had shifted towards solving smaller sub-
tasks through these TempEval Shared Tasks. However, with our temporal
QA toolkit (in Chapter 5), now it is prime time to improve the temporal QA
systems. Future TempEval organizers can evaluate the temporal QA systems

with our proposed metrics (section 6.2).

8.3 Closing Remarks

In this dissertation we presented systems to solve a portion of the language
understanding problem — temporal information understanding. We extracted
temporal information from raw texts, classified temporal relations between
entities, and built a system to do the temporal reasoning. Additionally, we
proposed evaluation methodologies to evaluate automated systems and further

improved the existing temporal processing resources.

http://www.cs.york.ac.uk/semeval-2013/taskl/
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This appendix lists and briefly describes the academic publications and the

language resources that are generated in the course of this PhD.

A.1 Publications

e Naushad UzZaman and James F. Allen. Extracting Events and Tem-
poral Expressions from Text. Fourth IEEE International Conference on
Semantic Computing (IEEE 1CSC2010), Pittsburgh, USA, September
2010. (Chapter 4).

e Naushad UzZaman and James F. Allen. Event and Temporal Expression
Extraction from Raw Text: First Step Towards a Temporally Aware
System. International Journal of Semantic Computing, 2011. (Chapter
4).
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for TempEval-2: Extracting Temporal Information from Text. Interna-

tional Workshop on Semantic Evaluations (SemEval-2010), Association
for Computational Linguistics (ACL), Sweden, July 2010. (Chapter 4).
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Naushad UzZaman and James F. Allen. Temporal Evaluation. Proc. of
The 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies (Short Paper), Portland, Oregon,
USA, June 2011. (Chapter 6).

Naushad UzZaman, Hector Llorens and James F. Allen. Evaluation of
Temporal Information Understanding with Temporal Question Answer-
ing. Proc. of IEEFE International Conference on Semantic Computing,

Italy, September 2012.7 (Chapter 5, 6).

Naushad UzZaman and James F. Allen. TRIOS-TimeBank Corpus:
Extended TimeBank corpus with help of Deep Understanding of Text.

Proc. of The Seventh International Conference on Language Resources

and Evaluation (LREC), Malta, May 2010. (Chapter 7).

Naushad UzZaman, Hector Llorens and James F. Allen. Merging Tem-
poral Annotations. Proc. of The 19th International Symposium on Tem-

poral Representation and Reasoning. (Chapter 7).

Naushad UzZaman, Hector Llorens, James F. Allen, Leon Derczynski,
Marc Verhagen, James Pustejovsky. 2012. TempEval-3: Evaluating
Events, Time Expressions, and Temporal Relations. arXiv:1206.5333v1.
(Chapter 7).

Naushad UzZaman, Jeffrey P. Bigham and James F. Allen. Multimodal
Summarization of Complex Sentences. Proc. of International Confer-
ence of Intelligent User Interface (IUI), Palo Alto, CA, 2011. (Chapter
8).

Naushad UzZaman, Jeffrey P. Bigham and James F. Allen. Multimodal

Summarization for people with cognitive disabilities in reading, linguistic
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and verbal comprehension. 2010 Coleman Institute Conference, Denver,

CO, 2010. (Chapter 8).

A.2 Language Resources

1. Temporal Expression Normalizer
This program takes a temporal expression as an input and returns the
normalized type and value according to TimeML scheme. This is a requ-
lar expression based program, which had the second best performance in
TempEval 2010 (temporal evaluation shared task). It is described in sec-
tion 4.4, and the toolkit is available online at http://code.google.com/

p/roc-trios/downloads/detail ?name=tempexp-normalizer.py.

2. Temporal QA Toolkit
Given a TimeML annotated document, this toolkit answers temporal
questions by doing temporal reasoning. This toolkit can answer yes/no,
list and factoid questions. It is described in Chapter 5 and available

online at http://www.cs.rochester.edu/u/naushad/temporal.

3. Temporal Evaluation Toolkit
This toolkit evaluates systems that extract temporal information from
text. It uses temporal closures to reward relations that are equivalent but
distinct. This metric measures the overall performance of a system with
a single score, making comparison between different systems straight-
forward. This metric has been adopted to evaluate the participants in
TempEval-3. The toolkit is described in section 6.1. It is available online
at http://code.google.com/p/roc-trios/downloads/detail?name=

Temporal_Evaluation.zip.
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4. Toolkit to Evaluate Temporal Understanding with QA
This toolkit evaluates the temporal information understanding with tem-
poral question-answering. Our proposal for evaluating temporal informa-
tion understanding with temporal QA is motivated by the benefits inher-
ent in the use of QA to assess the understanding of natural language. The
benefits of using temporal QA for temporal information understanding
are: (i) QA represents a task-focused way of evaluation, which is natural
and simple for humans; (ii) it is much easier to create temporal questions
(needed to evaluate temporal information by QA) than annotating new
documents with temporal information (needed to evaluate by corpus).
Hence, the evaluation by QA allows to create a larger test set more eas-
ily. (iii) moreover, QA allows the evaluation of temporal understanding
in other domains as well, which enables the testing of the generality of
the systems. This toolkit is described in section 6.2 and available online

at http://www.cs.rochester.edu/u/naushad/temporal.

5. TRIOS-TimeBank corpus and TRIPS Ontology
TRIOS-TimeBank corpus is an extension to TimeBank corpus with sug-
gestions for missed events and temporal expressions, new event feature
(ontology type), extra SLINKSs, and new RLINK. Details can be found
in section 7.1. TRIPS ontology has a mapping from ontology type to
WordNet. It is available online at https://www.cs.rochester.edu/u/

naushad/trios-timebank-corpus.

6. TempEval-3 Resources
Temporal Evaluation Shared Task - TempEval-3 is described in section
7.3. The released resources such as corpora and evaluation toolkit for
TempEval-3 will be available online at http://www.cs.york.ac.uk/

semeval-2013/taskl/.
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