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Abstract  

Language Modeling Approaches to Question Answering 

Protima Banerjee 

Hyoil Han, Ph.D. 

 

 

 

 

 In today’s environment of information overload, Question Answering (QA) is a 

critically important research area. QA is the task of automatically extracting a precise 

answer from one or more data sources to a question posed in natural language.  A two-

stage strategy is typically adopted when designing a QA system; the first stage is an 

Information Retrieval (IR) process which returns a set of candidate documents relevant to 

the question and the second stage narrows the information contained in those passages 

down to a single response (sentence or entity) that answers the question, typically using 

Information Extraction (IE) or Natural Language Processing methods.  This research 

proposes novel techniques for QA by enhancing the user’s original query with latent 

semantic information from the corpus.  This enhanced query is then applied to both the 

first and second stages of the QA architecture.  To build the enhanced query, we propose 

the Aspect-Based Relevance Language Model as an approach that uses statistical 

language modeling techniques to measure the likelihood of relevance of a concept (or 

aspect as defined by Probabilistic Latent Semantic Analysis) to a question.  We then use 

terms from the aspects that have the highest likelihood of relevance to design a model for 

a semantic Question Context, which includes sense-disambiguated terms than amplify the 

user’s query.  Question Context is incorporated into the first state of QA as query 



x 

expansion to improve recall.  We then derive a novel measure called Answer Credibility 

from the Question Context.  Answer Credibility may be thought of as a statistical 

measure of the reliability of a candidate answer with respect to a question and the source 

text from which the candidate answer was derived.  We incorporate Answer Credibility in 

the Answer Validation process; the answer with the highest score after the application of 

Answer Credibility is returned to the user.  Our techniques show performance 

improvements over state-of-the-art approaches, and have the advantage that they use 

statistical techniques to derive semantic information to aid the process of QA.  
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1. INTRODUCTION 

 

In today’s environment of information overload, Question Answering (QA) is a 

critically important research area. To make effective use of the massive amounts of 

readily available data, humans need efficient tools that will bypass irrelevant information 

to find the precise “nuggets” of data that answer their specific questions.  The user of a 

QA system may range from a homeowner who is searching for a method to remove 

carpet stains to an intelligence analyst searching for signs of potential terrorists in a major 

metropolis.  In either case, the human ability to synthesize, analyze and evaluate all of the 

available information sources is limited by both time and cognitive capacity; in order for 

us to make effective use of information we require automated tools to help us make sense 

of data, especially when our questions are time-critical. It is the goal of automated QA 

systems to streamline information processing, and to ensure that the human user is 

presented with the right information in a timely manner. 

It should be noted that Question Answering, while related to Information 

Retrieval (IR) and Information Extraction (IE), is distinct from both these fields.  QA 

goes beyond entity identification, which is the primary task of an IE system.  A QA 

system must pinpoint the specific entity that answers a question, and often times 

answering a question correctly requires the proper identification of complex relationships 

between entities.  In a similar vein, a QA system transcends traditional IR; a QA system 

returns snippets of valuable information rather than entire passages or documents which 

then need to be scanned by a user.  Another key distinction between QA and IR is the 

importance of identifying the absence of relevant information.  If a QA system is unable 
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to answer a given question with the data available to it, this must be communicated to the 

user.  In other words, in QA a wrong answer is worse than no answer at all. 

A two-stage strategy is typically adopted when designing a QA system; the first 

stage is an IR process which returns a set of candidate documents and/or passages 

relevant to the question and the second stage narrows the information contained in those 

passages down to a single response (sentence or entity) that answers the question.  This 

proposal describes the design of a novel system which will incorporate statistical 

language modeling techniques into both the first and second QA stages, and then evaluate 

the effectiveness of our techniques using metrics that have been well-established in the 

TREC Question Answering Track (E. M. Voorhees & D. Harman, 2005).   

Our approach to QA focuses on the problem of sparse queries; that is, a typical 

query submitted to a QA system contains relatively few terms, and virtually no 

supporting information that amplifies those terms.  The document corpus, on the other 

hand, is a rich source of textual information about the specific terms that appear in the 

query.  As such, we propose to enhance the user’s original query with latent semantic 

information from the document corpus.  This enhanced query is then applied to both the 

first and second stages of the QA architecture.  This enhanced query is then applied to 

both the first and second stages of the QA architecture.  To build the enhanced query, we 

propose the Aspect-Based Relevance Language Model as an approach that uses statistical 

language modeling techniques to measure the likelihood of relevance of a concept (or 

aspect as defined by Probabilistic Latent Semantic Analysis) to a question.  We then use 

terms from the aspects that have the highest likelihood of relevance to design a model for 

a semantic Question Context, which includes sense-disambiguated terms than amplify the 
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user’s query.  Question Context is incorporated into the first state of QA as a query 

expansion and document smoothing mechanism to improve recall.  We then derive a 

novel measure called Answer Credibility from the Question Context.  Conceptually, 

Answer Credibility may be thought of as a statistical measure of the reliability of a 

candidate answer with respect to a question and the source text from which the candidate 

answer was derived. We incorporate Answer Credibility in the Answer Validation 

process in the second stage of QA to set the answer score. The answer with the highest 

score after the application of Answer Credibility is returned to the user as the final 

response of our QA system. 

Our research focuses on Question Answering on topics in the open-domain due to 

availability of evaluation testbeds.  We believe that opportunities for application of our 

techniques into one or more specialty domain areas exist in the future as they have shown 

significant improvements over the baseline. 

 

1.1 Research Questions 

 The goal of the proposed research is to investigate and evaluate the incorporation 

of language modeling techniques into a two-stage Question Answering system.  A two-

stage Question Answering system can be broadly decomposed into four processes:  

Candidate Document Selection, Answer Extraction, Answer Validation and Response 

Generation.  In this work, we explore the incorporation of language modeling techniques 

into the Candidate Document Selection and Answer Validation Question Answering 

processes.   We choose to focus on these processes for the following reasons: 
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• Candidate Document Selection makes up the bulk of the processing of the first 

QA stage; in Candidate Document Selection a set of documents which are likely 

to include the candidate answer are selected from a document corpus.  This stage 

is likely to involve some type of IR mechanism.  If we are to consider applying 

statistical language modeling methodologies to the first stage of Question 

Answering, we must address how these techniques can be incorporated into 

Candidate Document Selection. 

• To date, the bulk of research related to the second QA stage has focused on 

Answer Extraction – specifically using mature IE techniques.  Furthermore, the 

Answer Extraction processes focuses on narrowing down large segments of text 

into one or more specific chunks that might be considered the (exact) correct 

answer to a question.  Statistical language modeling is a generative technique, and 

is not well-suited to the task of narrowing down large segments of text into very 

fine-grained sub-sections. For both these reasons, the Answer Extraction process 

does not seem an applicable target for this research. 

• Statistical language modeling techniques are most effective when significant 

amounts of text are available.   Answer Validation focuses on validating a set of 

candidate answers that are returned from the Answer Extraction process with 

respect to supporting source text from the corpus.  At a high level, one might 

consider that the Answer Validation process takes two small segments of text, the 

question and a candidate answer, and seeks to determine what level of support this 

particular question/answer pair has within the document corpus.  In this light, the 

Answer Validation process lends itself to the application of generative techniques; 



5 

one may look at Answer Validation as the likelihood of a particular 

question/answer pair, given a statistical models of the documents which exist in 

the corpus. 

• For the purposes of this research, Response Generation is viewed as an extension 

of Answer Validation.  Specifically, we consider Response Generation to be 

simply the selection of the highest ranked answer after the Answer Validation 

process completes.  While this is certainly a simplified view of the Response 

Generation process we consider it sufficient for the scope of this work. 

 

 We propose to answer the following research questions during the course of our work: 

1. Can we incorporate statistical language modeling techniques into the Candidate 

Document Selection stage of the Question Answering architecture, and thereby 

improve QA performance? 

2. Can we design a model for Question Context based on statistical language 

modeling methods that is able to incorporate latent semantic information that 

exists within the corpus? 

3. Can we incorporate statistical language modeling techniques into the Answer 

Validation stage of the Question Answering architecture, and thereby improve 

QA performance? 

4. Can we design a model for Answer Credibility based on statistical language 

modeling methods that can be incorporated into the Answer Validation process 

that can be used to improve QA accuracy? 
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1.2 Contributions 

 The primary contributions of this research are as follows: 

1. Formal development of the Aspect-Based Relevance Language Model on the 

basis of two established statistical language models: Probabilistic Latent 

Semantic Analysis (PLSA) and Relevance-Based Language Models. 

2. Development of a Question Context Model (QCM) based on the Aspect-

Based Relevance Language Model.   

a. Our QCM uses only the corpus itself as a knowledge source, and 

relates the query to one or more sense-disambiguated concepts that 

exist within in the corpus. 

3. This Question Context Model (QCM) is then incorporated into Candidate 

Document Selection process using query expansion and document smoothing 

methods, showing an improvement in recall over baseline methods. 

4. Then, we use the Question Context Model to derive a model for a novel 

measure called Answer Credibility.  At a high level, Answer Credibility is a 

measure of the reliability of the source document associated with a candidate 

answer.   

5. We then incorporate Answer Credibility into the Answer Validation process, 

and show improvements in accuracy and Mean Reciprocal Rank (MRR) that 

are comparable with state-of-the-art systems. 
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1.3 Dissertation Organization 

This dissertation is organized into six chapters. The first chapter, this chapter, 

introduces Question Answering and statistical language modeling, describes the 

contributions of our research, and presents background information. Chapter 2 provides a 

literature review, broken down into two major areas. The first area is statistical language 

modeling, and it is reviewed in the large (i.e., not domain specific), with a focus on the 

application to Information Retrieval.  The second area is Question Answering, which has 

a rich history extending back approximately 60 years. In our review, we give an overview 

of Question Answering research and then provide detailed reviews of research in the 

areas of Candidate Document Selection and Answer Validation.  Chapter 3 describes the 

rationale and formal derivation of the Aspect-Based Relevance Language Model.  

Chapter 4 discusses the design of the Question Context Model (QCM), its application to 

Candidate Document Selection, our evaluation methodology, and the results of our 

evaluation. Chapter 5 discusses the design of the Answer Credibility Model (ACM), its 

application to Answer Validation, our evaluation methodology, and the results of our 

evaluation. Chapter 6 concludes this dissertation and presents some areas for future work. 

 

1.4 Introduction to Question Answering 

Hirschman (Hirschman & Gaizauskas, 2002) proposes an architecture for a generic 

QA system, which we adopt as the basis for our Question Answering architecture.  In this 

conceptual architecture, five core processes must be performed in order for a question to 

be successfully answered: 
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1. Question Analysis, during which a question is interpreted and decomposed into 

whatever constituent parts are required for subsequent processing.  A user model 

and QA context are helpful during this stage for the incorporation of any a priori 

knowledge that the system may want to take into account.  

2. Document Collection Pre-processing, during which the document corpus is 

decomposed into whatever format is most helpful for subsequent processing.  

Some common activities that may occur in this process include stemming, part-of-

speech tagging, passage identification, entity extraction and indexing. 

3. Candidate Document Selection, during which a set of documents which is likely 

to include the candidate answer are selected from the processed document corpus.  

This stage is likely to involve some type of IR mechanism. 

4. Answer Extraction, during which a set of candidate answers are extracted from 

the documents and/or passages returned from the Candidate Document Processing 

step.  This step may involve some Information Extraction or Natural Language 

Processing techniques; a significant amount of QA research to date has focused 

on Answer Extraction. 

5. Answer Validation and Response Generation, during which the set of candidate 

answers are validated with respect to supporting source text from the corpus and 

then reduced to a single response that can then be returned by the system.   

When considering the remainder of this research, it may be valuable to consider this 

generic Question Answering architecture, as presented in Figure 1. 
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Figure 1:  Generic System Architecture for Question Answering 

 

1.5 Introduction to Language Modeling 

Language modeling is a formal probabilistic retrieval framework with roots in 

speech recognition and natural language processing (Jurafsky & Martin, 2000).  The 

underlying assumption of language modeling is that human language generation is a 

random process; the goal is to represent that process via a statistical model.  Using a 

language model, we can calculate the likelihood of a language sequence, such as a 

sentence, being generated.   
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Language models were first successfully applied to information retrieval by Ponte 

and Croft (Ponte & Croft, 1998).  In that work, the authors proposed a query-likelihood 

model (X. Liu & Croft, 2005) in which a query is considered to be generated from an 

“ideal” document that satisfies an information need.  The retrieval engine estimates the 

likelihood that each document in the corpus is the ideal document, and then ranks the 

documents accordingly.  The underlying premise to this approach is that each document 

in the corpus has a different language model (Manning, Raghavan, & Schutze, 2007). 

This allows the use of statistical techniques to both estimate document models and to 

score documents against a particular query.   

Later works (Lavrenko & Croft, 2001; Song & Croft, 1999; C. Zhai & Lafferty, 2004) 

expand on this early research using more sophisticated models that include topics, 

phrases and relevance. All confirm that language modeling techniques are preferred over 

tf-idf (term frequency-inverse document frequency) weights (S. Robertson & Jones, 

1997), because of empirical performance as well as the probabilistic meaning that can be 

formally derived from a language modeling framework.  In contrast to the classic vector 

space model (Salton & McGill, 1986) which produces a geometric document score, a 

language model produces a likelihood estimate which is intuitively easier to understand. 

The majority of language modeling approaches to information retrieval can be 

categorized into one of four groups:  a) the generative query likelihood approach, which 

ranks based on the likelihood of a document language model generating the query b) the 

generative document likelihood approach, which ranks based on the likelihood of a query 

language model generating a document c) the comparative approach, which ranks based 

on the similarity between the query language model and document language model, and 
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d) translation models, which rank based on the likelihood of the query being viewed as a 

translation of a document.   Two language models that are especially foundational to this 

work are Probabilistic Latent Semantic Analysis (PLSA) and the Relevance-Based 

Language Model; these are discussed first within the context of the literature in Chapter 2 

and explored in more detail as a part of our theoretical framework in Chapter 3.  A full 

survey of language modeling techniques and their application to Information Retrieval 

(IR) is presented in the following chapter. 
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2. LITERATURE REVIEW 

The review of literature is divided into five sections. The first two sections are 

focus on language modeling.  Section 2.1 describes statistical language modeling; Section 

2.2 traces the application of statistical language modeling to Information Retrieval. The 

next three sections focus on Question Answering.  Section 2.3 provides a general 

perspective on QA.  Sections 2.4 and 2.5 describe current research in Candidate 

Document Selection and Answer Validation respectively. 

 

2.1 Statistical Language Modeling 

The roots of statistical modeling date back to the middle of the twentieth century 

with the work of Shannon (Shannon, 1951) .  Shannon proposed a conceptual framework 

in which a subject was asked to guess the next letter in a sequence from a stream of 

printed English, given the preceding letters and words in the passage.  The subject is 

informed if he guessed correctly; if he guessed incorrectly, he is told the correct letter in 

the sequence and can then proceed to the next letter.  Only the letters that are incorrectly 

guessed, that is, the letters where the system must provide the correct letter to the subject, 

are written down.  The next subject in the experiment would then be asked to re-construct 

the original sequence from the stream of incorrectly guessed letters, which Shannon calls 

the “reduced text.”  The underlying premise of this experiment, and the concept which 

carries through to statistical language modeling, is that a stripped down or lossy version 

of a full text can be used to reconstruct the complete document.  

The work of Zipf (Zipf, 1949) is also fundamental to statistical language 

modeling.  While studying statistical word occurrences in natural language texts, Zipf 
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postulated that the frequency of word occurrences in a document is roughly inversely 

proportional to a word’s rank within the document, if the words are sorted by occurrence 

frequency.  Conceptually, Zipf’s Law says that “while only a few words are used very 

often, many or most are used rarely (Zipf, 1949).”  Zipf’s work evidences the 

applicability of statistical models to natural language; it should be noted that while his 

most prominent work dealt with English language texts, he also successfully applied the 

same model to languages such as Chinese, which have a widely divergent grammar from 

English.  

Fundamentally, a statistical language model is a generative pattern of language; 

that is, it seeks to estimate the probability of occurrence of a sequence of words.  

Language modeling is predictive in nature; the goal of the model is to estimate the 

probability of future words, given the pattern of words that we already know (Manning & 

Schütze, 1999).  Language modeling has been applied to a variety of fields including 

natural language processing, speech recognition, machine translation, and information 

retrieval.  A full survey of statistical language modeling techniques across these divergent 

applications is beyond the scope of the current paper, and the reader is encouraged to 

review Rosenfeld’s survey on the topic (Rosenfeld, 2000) for an overview.  Seminal 

papers in the field have included the work of Bahl, et. al. (Bahl, Brown, de Souza, & 

Mercer, 1989), which discusses statistical language modeling in the context of speech 

recognition, Jelinek and Mercer (Jelinek & Mercer, 1980), which presents a method for 

estimating language model parameters in a sparse data environment and Katz’s method 

(Katz, 1987) for CPU and storage efficient language model computation.  
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The perplexity metric is commonly used to assess the effectiveness of a language 

model (Jelinek, Mercer, Bahl, & Baker, 1977).  Perplexity is a type of information 

entropy measure; mathematically, perplexity is defined by the formula below, where H is 

the entropy measure for a particular random variable X having a probability distribution 

p(x). 
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Conceptually, perplexity can be thought of as a confidence measure of the predictive 

properties of the model.  At a word or passage level, the perplexity measure defines how 

confidently we can define the next word in a sequence given the context of the previous 

words.  Language models can be evaluated against one another by comparing their 

perplexity measures.  It should be noted that perplexity is domain dependent; a given 

language model will typically have much lower perplexity (better performance) in a 

highly specialized domain than in general English. 

The simplest form of language model is the “bag of words” or unigram model, 

which examines each word independently of its context (Manning et al., 2007).  There 

are many other more complex types of language models such as bi-gram models or tri-

gram models which condition the existence of the next word based on the previous word 

or two words; words are considered as sets of two or three, respectively in these 

approaches (Jurafsky & Martin, 2000).  Many modern approaches (Rosenfeld, 2000) 

have used large corpora to train language models; these approaches have typically used 

simple models such as unigram or bi-gram approaches to language models, relying on the 

large quantities of training texts of various types to improve performance (Rosenfeld, 

2000).  
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The fundamental problem of language modeling is that we never have a clear 

confirmation of the specific model that we are assigning to any given document 

(Manning et al., 2007).  This is because the language model is an estimate of word 

occurrence probabilities based on the text of a document; we treat each document in our 

collection as a piece of representative text from its underlying language model.  Thus, the 

creation of a language model for a given document is essentially the problem of deriving 

a complete word occurrence probability model from an incomplete or lossy sample (the 

document text). In this situation, there are often cases where words which ought to be 

included as a part of the language model for a document are, in fact, not present in the 

actual text, even if the size of the text is huge. For example, a document about healthful 

eating ought to have a high probability of occurrence for the words “diet” and “nutrition” 

as a part of its language model even if those words are not in the text of the document.  

However, a document about healthful eating is less likely to contain the word “alligator” 

since it is less likely that a document about healthful eating will be related to alligators.  

From these examples one can see that it is problematic to use estimates such as the 

Maximum Likelihood Estimate which are based strictly on term counts for language 

model construction.  This is often referred to as the “zero frequency problem” or the 

“sparse data problem (Witten & Bell, 1991).”   

Smoothing is a set of techniques used to address the “sparse data” issue.  

Smoothing is so called because it attempts to raise low word-occurrence probabilities and 

lower high word-occurrence probabilities, based on prior knowledge about a passage, 

document or corpus (C. Zhai & Lafferty, 2004).  Smoothing is a fundamental part of the 

language modeling paradigm; “in the language modeling approach, the accuracy of 
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smoothing is directly related to retrieval performance(C. Zhai & Lafferty, 2004).”  In the 

sections below the smoothing techniques which are applied by each of the language 

modeling approaches will be explicitly described. 

 

2.2 Language Modeling Approaches to Information Retrieval 

Prior to embarking on a comparative study of any set of Information Retrieval 

(IR) techniques, it is valuable to first engage in a brief discussion of evaluation metrics.  

In an IR context, performance is most commonly measured via precision and recall.  

Precision can be described as the ratio of relevant documents returned by the query to the 

total number of query results.  Recall can be described as the ratio of the relevant 

documents returned by the query to the total number of relevant documents in the 

collection.  We consider the number of documents which are relevant to a given question 

in the corpus to be those documents which contain the correct answers when calculating 

the precision and recall metrics.  We use the following formulae to describe precision and 

recall: 
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Here, DRet is the set of documents that are returned by a particular query and DRel is the 

set of documents in the corpus which are relevant to the query. 

A metric called Mean Average Precision (MAP) has been introduced to evaluate the 

performance of retrieval engines for the TREC experiments (Voorhees & Harman, 1999).  

The Average Precision measure divides a function of the number of documents retrieved 



17 

up to a certain cut off ranking by the total number of relevant documents retrieved.  “The 

average precision measure has a recall component in that it reflects the performance of a 

retrieval run across all relevant documents and a precision component in that it weights 

documents retrieved earlier more heavily than documents retrieved later (Voorhees & 

Harman, 1999).”   MAP is then the mean value of these Average Precisions across a set 

of queries and/or topics.  In recent TREC experiments (Voorhees, 2005b) a measure 

called Geometric MAP or GMAP has been introduced, which uses a geometric mean, 

rather than arithmetic mean to calculate MAP from Average Precision scores.  The 

GMAP measure weights retrieval topics which have a lower MAP most heavily, and it 

has been used as an evaluation metric for the TREC Robust Track 

(http://trec.nist.gov/data/robust.html) which looks for engines that perform consistently 

across a diversity of topics. 

Since the introduction of language modeling to information retrieval (IR) by 

Ponte and Croft (Ponte & Croft, 1998), there have been a number of IR approaches based 

on language modeling techniques  As stated earlier, this paper categories IR research 

using language modeling techniques into four broad categories:  1) generative query-

likelihood models,  2) generative document-likelihood models, 3) model comparison 

approaches, 4) statistical translation methods and 5) cluster-based language models.  The 

remainder of this section explores the research that has been performed in each of these 

categories in detail.   

 

2.2.1 Query Likelihood Models 
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The premise of the query-likelihood approach is that each document in a 

collection can be thought of as having an individual document language model, and 

document language models within the collection can be ranked by their probability of 

being able to generate a particular query.  The earliest work in the query-likelihood 

family of approaches can be considered to be that of Kalt (Kalt, 1996).  Kalt considered 

that term probabilities for documents related to a single topic can be modeled by a single 

stochastic process; documents related to different topics would be generated by different 

stochastic processes.  Kalt’s model treats each document as a sample from a topic 

language model.  Since the problem he considered was text classification, queries were 

derived from a training set rather traditional query strings.  Kalt’s approach was based on 

the Maximum Likelihood Estimate (MLE) (Manning & Schütze, 1999), and incorporated 

collection statistics, term frequency and document length as integral parts of the model.  

Although later query-likelihood approaches are more robust in that they consider that 

each document (vs. a group of documents) is described by an underlying language model, 

Kalt’s early work is clearly a pre-cursor to language modeling in information retrieval. 

The Ponte and Croft query-likelihood model (Ponte & Croft, 1998) assumes a 

unigram language model and, like Kalt’s model, starts from the basis of the MLE.  

Mathematically, MLE is defined below where p(t|d) is the probability of a term given a 

document d, tf is the term frequency of the given term t, and dl is the total number of 

terms within the document, which can also be thought of as the document length.  Ponte 

and Croft equate MLE to the probability of the term given the document’s language 

model, or p(t|Md). 
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To smooth the zero probability terms in the MLE, the authors take the background 

probability of all terms in the collection into account; that is, they augment the 

probability of the term appearing in any specific document with the probability of the 

term across the entire document collection.  However, as not all the documents in the 

collection come from the same language model, a geometric risk function is incorporated 

into the smoothing methodology.  This risk function essentially minimizes the impact of 

documents which might be “outliers” for a given term; in other words, it reduces the 

impact of those documents which have term frequencies which diverge from the 

normalized mean of the collection by reducing their contribution to the language model.  

The risk function R(t,d) for term t in document d is shown below, where ft is the mean 

term frequency of term t in those documents in which it occurs and tf is the term 

frequency for term t in document d. 
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Ponte and Croft incorporate the risk function into their approach by using it to modulate 

the influence of the term frequency within the specific document as well as the average 

occurrence of the term within the corpus.  The final formula, including the risk function, 

for the probability of occurrence of a term within a given language model p(t|Md) is 

shown below. 
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Here, pavg(t) is defined to be the average occurrence of a term t within each document in 

the corpus in which it exists.   
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To test their approach, the Ponte and Croft implement a research prototype called 

Labrador (Ponte & Croft, 1998) and perform experiments using queries and data from 

past TREC collections (http://trec.nist.gov/data.html).  The results are evaluated against 

baseline results from the INQUERY retrieval engine, which uses a tf-idf retrieval 

approach combined with inference networks (Callan, Croft, & Harding, 1992).  The 

results showed that the language model approach outperformed tf-idf for both query sets 

evaluated.   

In a later work, Song and Croft (Song & Croft, 1999) apply a more generic view 

to the language modeling problem based on the same query-likelihood viewpoint; they 

evaluate a number of approaches to language modeling and propose a set of 

improvements that can either be used independently or in conjunction with one another.  

Specifically, they focus on smoothing document language models with the Good-Turing 

estimate (Manning & Schütze, 1999) and curve fitting, expanding a document model with 

the corpus document model, modeling a query as a sequence (rather than a set) of terms, 

and finally combining the unigram language model with a bi-gram language model.   

The Good-Turing estimate adjusts the raw term frequency scores tf in the 

following manner: 
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Here, Ntf represents the number of terms that have term frequency tf, and E(Ntf) is the 

expected value of the number of terms that have a term frequency of tf.  Intuitively, the 

Good-Turing estimate states that the ratio of two adjacent term frequencies will be 

equivalent to the ratio of the expected values of the number of terms that have those 

frequencies.  Practically, however, it is difficult to determine the number of terms that 
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have specified frequencies due to the limited data available within a document; too many 

terms may have frequencies close to zero to make the Good-Turing estimate useful.  

Song and Croft adopt a curve fitting approach that uses a geometric distribution with a 

nested logarithmic exponent to approximate E(Ntf). 

Song and Croft use the Good-Turing estimate to create a smoothed language 

model for both the individual document as well as the corpus.  Then, they apply a 

weighted sum to combine the document language model with the corpus language model.  

The weighted sum approach is represented below: 

  )()1()|()|( tPwdtwPdtp corpusdocument −+=    (8) 

The weighting parameter w is a number between 0 and 1, and the weighted sum approach 

of combining probabilities has the advantage of always producing a normalized result; in 

other words, the weighted sum approach will always produce a number between 0 and 1 

for p(t|d).  

Interpolation is also used to combine the unigram document model with a bi-gram 

document model.  This is represented below: 

  )|,()|()|,( 1211 dttpdtpdttp iiiii −− += λλ   (9) 

Here, the weighting parameters λ1 and λ2 should be set so that λ1 + λ2 is equal to 1 for 

every term t.  This is done empirically by Song and Croft; however, the Expectation 

Maximization algorithm (Dempster, Laird, & Rubin, 1977) can be used to set these 

parameters using a training corpus. 

In terms of query processing, Song and Croft treat the query as a sequence of terms, as 

opposed to the set of terms approach adopted by Ponte and Croft.  This can be 

represented as follows: 
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The experiments conducted by Song and Croft on Wall Street Journal and TREC4 data 

show that their generic approach performs better than both INQUERY and the original 

Ponte and Croft approach (Ponte & Croft, 1998). 

Hiemstra (Hiemstra, 1999) presents a related approach which applies statistical 

language modeling to information retrieval.  Hiemstra’s approach emphasizes the 

importance of the ordering of the terms in the document.  That is, “the most important 

modeling assumption we make is that a document and a query are defined by an ordered 

sequence of words and terms.(Hiemstra, 1999).”  In this framework, text is modeled as an 

ordered sequence of n random variables, one for each unique term which appears in the 

document.  This is represented by the following models for documents and queries: 
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where D and Q are the documents and queries respectively and Ti is the event that term i 

occurred in document D or query Q.  The matching process between a query and a 

document are represented by the following formula: 
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Here τ  represents the set of all possible term sequences T1, T2,..TN.  

Hiemstra also addresses the sparse data problem.  “We believe,” he states, “that 

the sparse data problem is exactly the reason that it is hard for information retrieval 

systems to obtain high recall values without degrading values for precision.”  Hiemstra 

smoothes the probability distribution for each term using a linear interpolation of term 

frequency and document frequency.  This is represented by the equation below: 
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Here, df(ti) is the number of documents in which term ti appears, which is also known as 

the document frequency and tf(ti,d) is the number of times term ti; appears in document d, 

which is also known as the term frequency.  The document frequency term in the 

equation above can be thought of as the smoothing contribution coming from the 

document corpus, while the second term can be thought of as the contribution coming 

from an individual document. α1  and α2, are the weighting coefficients for the document 

frequency and term frequency contribution to the smoothing model, respectively.  

Hiemstra does not specifically proscribe a method for setting α1 and α2.  “In general,” he 

says, “one wants to find the combination of weights that works best, for example, by 

optimizing them on a test collection consisting of documents, queries, and corresponding 

relevance judgments (Hiemstra, 1999).”  It should be noted that this smoothing approach 

can be directly related to the well-known tf-idf approach. 

Hiemstra’s smoothing model is similar to Song and Croft’s smoothing model in 

that both approaches are fundamentally a linear combination of a corpus document model 

(Hiemstra’s document frequency component) and an individual document model 

(Hiemstra’s term frequency component).  However, there is one fundamental differences 

between the two approaches:  Song and Croft smooth the document and corpus language 

model (via the Good-Turing estimate) prior to the linear interpolation; Hiemstra 

combines the two models without smoothing (Song & Croft, 1999).  Hiemstra validates 

his approach by running experiments on the Cranfield collection (Cleverdon, Mills, & 

Keen, 1966), and comparing the results against the vector space model (Salton & McGill, 
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1986).  “The linguistically motivated approach performed better for a wide range of 

different α1 and α2. (Hiemstra, 1999).”  

A two-stage Hidden Markov Model forms the basis for the query-likelihood 

language model presented by Miller, Leek and Schwartz (D. R. H. Miller, Leek, & 

Schwartz, 1999).  A discrete Hidden Markov Model is defined by “a set of output 

symbols, a set of states, a set of probabilities for transformations between the states, and a 

probability distribution on output symbols for each state (D. R. H. Miller et al., 1999).”  

The Hidden Markov Model is referred to as “hidden” because the state transition process 

itself is never directly observed; it can only be inferred based on observed events.  

Hidden Markov Models are widely used in natural language processing and speech 

recognition (Jurafsky & Martin, 2000). 

The first stage in the proposed Hidden Markov Model represents the probability 

that a given query term will be found within the document; the second stage in the 

proposed Hidden Markov Model represents the probability that a given query term will 

be found within General English but is unrelated to the document  The proposed model 

makes the simplifying assumption that a given query term will move to either the first or 

second stage; thus only two stage changes are considered to be part of the model.  Miller 

et. al. (D. R. H. Miller et al., 1999) make simplifying assumptions similar to Ponte and 

Croft (Ponte & Croft, 1998) and Hiemstra (Hiemstra, 1999).  Rather than using the 

Expectation Maximization algorithm (Dempster et al., 1977)  to compute transition 

probabilities and output distributions, the simpler MLE method is used.  In this model, 

the “General English” stage of the Hidden Markov Model provides a smoothing function.  

This stage is approximated by using the entire document corpus as an approximation for 
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the full English language.  A graphical representation of the two-stage Hidden Markov 

Model is depicted in Figure 2 below. 

 

Figure 2:  The Two-stage Hidden Markov Model Approach to Modeling Query-

Likelihood Language Models  

 

Mathematically, the two-stage Hidden Markov Model is represented by the following 

equation: 
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where P(Q|D) is the likelihood of the query being a representation of the document, 

P(q|D) is the probability that an individual query term q will be found in the document 

stage of the HMM, and P(q|GE) is the probability that the query term will be found in the 

General English stage of the HMM, but not in the document stage.  The coefficients a1 

and a0 are used to weight the respective components of the equation. 

Experimentally, ad hoc retrieval experiments were run which compared the 

performance of the Hidden Markov Model based approach against tf-idf on the TREC-6 

and TREC-7 collections (http://trec.nist.gov/data.html).  The HMM based approach 

outperformed tf-idf on queries against document titles, document descriptions, document 

narratives and against the full text of documents. After the results of the initial 

experimentation, the authors included four refinements to their system to further increase 
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performance:  blind feedback, bi-gram modeling, feature dependent priors and query 

section weighting.  Of these, blind feedback yielded the most significant improvements.  

The blind feedback approach taken within the Hidden Markov Model framework 

augments the initial query with words appearing in the top ranked documents, and then 

adjusting the state transition probabilities to account for increased likelihood of these 

terms. 

 

2.2.2 Document Likelihood Models 

The premise of the document-likelihood approach is that a language model can be 

generated for the query, and documents within the collection can be ranked by their 

probability of having been generated by the query’s language model. In practice, this 

approach is most often used to enable expansion-based feedback as the terms in a query 

are generally too sparse to produce a reliable language model.  Zhai and Lafferty (C Zhai 

& Lafferty, 2001) first introduce the idea of a query language model, and propose two 

methodologies for query language model construction:  1) a generative model of 

feedback documents and 2) a model that minimizes divergence over feedback documents.  

The generative model is a mixture model that generates a feedback document by mixing 

the query terms with a collection language model, which is taken to be a reasonable 

model of irrelevant content in a document. A document can then be generated from the 

resulting language model if it contains either the query terms or the collection language 

model.  Conceptually, the divergence minimization language model estimates the query 

model by minimizing the average divergence between the query terms and the feedback 

documents.  The estimated resulting query model is close to each feedback document 
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model; however, in order to minimize the effect general terms that may be common to all 

the feedback documents, a regularization term is added to prefer documents that have a 

greater divergence from the collection language model. 

Empirically, the results of this feedback methodology were compared to a tf-idf 

approach with tuned Rocchio feedback on three TREC collections.  When compared with 

the tuned Rocchio approach, both model-based feedback methods performed better in 

terms of precision. 

The relevance model proposed by Lavrenko and Croft (Lavrenko & Croft, 2001) 

can also be thought of as a document-likelihood model. Conceptually, the relevance 

model is a description of a user’s information need which manifests itself in the form of a 

query.  Given a collection of documents and a user’s query, there exists a set of 

documents that are relevant to that query in the user’s judgment.   The ideal relevance 

model for a given query run on a specified document collection would be constructed 

from only the set of relevant documents within the collection; the relevance model in this 

framework is assumed to be a language model to which word probabilities are assigned.  

Each document relevant to the user’s query then simply becomes a sample from the 

underlying relevance model.   

The problem with this scenario is that in a typical retrieval environment we do not know 

the full set of relevant documents to a query and furthermore, we may not have any 

examples of documents which are relevant to the query. Lavrenko and Croft (Lavrenko & 

Croft, 2001) suggest a methodology that constructs a relevance model from a set of top 

ranked documents returned from a query.  A relevance model is formally defined as the 

probability of observing a word w in a set of relevant documents R, or p(w|R).  The query 
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q is also treated as a sample from R, although the sampling process that produces q is not 

necessarily the same as the process that generates w.  Lavrenko and Croft formally derive 

a process whereby p(w|R) can be estimated via p(w|MD), where MD is the document 

model for a limited set of top-ranked documents returned from the query.  They describe 

p(w|MD) as follows: 
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Here tf(w.D) is the number of occurrences of w in D, Σvtf(v,D) is the total number of 

occurrences of all terms v in D, and P(w|G) is the collection frequency of w divided by 

the total number of terms in the collection.  The smoothing parameter λ is set empirically.  

This approach is elegant in that it can easily incorporate common information retrieval 

procedures which would not otherwise fit cleanly into a language modeling framework 

such as pseudo-relevance feedback or true relevance feedback.  A linear interpolation 

method is used to smooth the MLE document models with the background model of 

English; smoothing parameters are set experimentally.  

Subsequent work in relevance models by Li (X. Li, 2005) treats a query as a short, 

special document and includes it in the documents that are used to approximate the 

relevance model to improve the robustness of the relevance modeling approach. In 

addition, instead of using a uniform prior as in the original relevance model, documents 

are assigned different priors based on their lengths and the probability of a term in the 

language model is adjusted by its probability in the language model of the corpus.  This 

variant of the relevance modeling approach was applied to both a pseudo relevance 

feedback and true relevance feedback environment, and compared with the Ponte and 

Croft (Ponte & Croft, 1998) query-likelihood approach as well as against the original 
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Lavrenko and Croft (Lavrenko & Croft, 2001) relevance model.  The model proposed by 

Li outperformed both the other approaches in terms of mean average precision in the area 

of document retrieval with both pseudo relevance feedback and true relevance feedback. 

 In later works, Lavrenko et. al. (Lavrenko, Choquette, & Croft, 2002) extend the 

relevance modeling approach to Cross-Language Information Retrieval (CLIR).  The 

proposed method “constructs an accurate relevance model in the target language, and 

uses that model to rank the documents in the collection (Lavrenko et al., 2002).”  Their 

approach discusses two estimation strategies:  one that assumes a parallel corpus (eg. 

documents discussing the same topic in both query and target languages), and the other 

that assumes the existence of bilingual lexicon.  In the former case, a joint probability 

model of word observations across the two languages is constructed; that is, a probability 

model is constructed that describes co-occurrence of words across languages that exist in 

documents related to the same topic.  In the latter case, it is the lexicon which provides 

translation probabilities between words across the two languages.  For cross-language 

information retrieval, the authors diverged from their earlier approach of ranking 

retrieved documents by the Probability Ranking Principle; instead they use Kullback-

Leibler divergence (Kullback & Leibler, 1951) as they found that this is “a more stable 

metric.”  Experimentally, this model was run on the TREC9 Cross-Language Track 

dataset against a mono-lingual baseline, and performed at 90-95% of the mono-lingual 

baseline in terms of average precision.  

 

2.2.3 Model Comparison Approaches 
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The model comparison approach is first introduced by Lafferty and Zhai (Lafferty 

& Zhai, 2001). In their risk minimization framework, “queries and documents are 

modeled using statistical language models, user preferences are modeled through loss 

functions, and retrieval is cast as a risk minimization problem (Lafferty & Zhai, 2001).”  

Within this context, a query is viewed as the output of a probabilistic process associated 

with a user U and a document is viewed as the output of a probabilistic process associated 

with an author or document source S.  A user first selects an internal model ΦQ having a 

probability distribution p(ΦQ|U).  A particular query q is then generated based on the 

parameters of that internal model with a probability of p(q|ΦQ).  Similarly, a document 

source selects an internal model ΦD according to probability p(ΦD|S), and then the 

probability of a generation of a particular document is given by the probability p(d|ΦD).  

The two Markov chains that represent this risk minimization process are shown in Figure 

3 below. 

 

Figure 3:  Representation of the Query and Document Generation Processes of the 

Risk-Minimization Framework Proposed by Lafferty and Zhai 

 

Here, relevance R is a binary variable which is 1 if a given document is relevant to a 

user’s query and 0 otherwise.  Relevance is described by the distribution p(R|ΦQ,ΦD).   
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In the Bayesian decision framework, there is an expected risk associated with every 

action of a given system.  In this context, the particular action that the system performs is 

returning a document di. in response to a query.  The risk function for an action a can be 

modeled by understanding the loss L(a) associated with that function.  The function 

R(di,q) which describes the risk associated with returning a particular document di, in 

response to a query is shown in the equation below: 

QDDQ

R

iDQDQi ddRpSdpUqpRLqdR
Q D

φφφφφφφφ
φ φ

),|(),|(),|(),,(),(
}1,0{

∑ ∫ ∫
∈

×=  (16) 

This is the basic retrieval formula based on risk minimization proposed by Lafferty and 

Zhai, which is used to calculate the ranking of documents di, returned in response to a 

query q. Lafferty and Zhai show how this risk minimization framework can be used to 

derive the “special cases” of the classical probabilistic model using a relevance-based 

loss function, and the query likelihood language modeling approach using a distance-

based risk function.  The Kullback-Leibler (KL) divergence model which is later 

elaborated in (C Zhai & Lafferty, 2001), is presented as a special case of the more general 

risk-minimization framework.   In the KL-divergence model, the relevance value of a 

document with respect to a query is measured by the probabilistic Kullback-Leibler 

divergence between the query model and document model. The problem of matching a 

query to a document thus reduces to a similarity or “distance” comparison which is 

similar to the classic vector-space model. 

To address the sparse data problem, the authors explore an approach to query and 

document language model expansion based on Markov chains which is motivated by 

statistical translation methods of Berger and Lafferty (Berger & Lafferty, 1999).  The 

intent of the Markov chain is to model the user’s browsing process, and the chain 
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proposes a random walk alternating between queries and documents.  Conceptually, the 

user is “surfing” through the word index for a given document collection, viewing the 

documents which contain that word, and then refining their information need as they go 

along.  Practically, this approach calculates “the posterior probabilities of words 

according to the translation model for generating the query and a prior distribution on 

initial terms selected by the user (Lafferty & Zhai, 2001).”  Mathematically, this 

approach can be represented by the following formula describing the probability of 

occurrence for a word w in a query q: 

   ∑∝
i
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Here, p(w|Φq) is an estimate for the language model, t(qi|w) is the translation model 

which describes the likelihood of translation between query term qi and word w, and 

p(w|U) is the likelihood that the user will start their “surfing” from the initial word w.  

The analogous formula for document expansion is shown below: 
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Experimentally, the risk minimization framework and query and document expansion 

methods were evaluated against three different TREC collections, and the results showed 

improved performance over baseline tf-idf methods.  The approach showed the greatest 

performance improvements over the baseline approach when using short queries against 

TREC web data. 

 

2.2.4 Statistical Translation Models 

In their statistical translation model, Berger and Lafferty (Berger & Lafferty, 

1999) propose that the formulation of a query is really the distillation of a user’s 
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information need into a succinct form.  That distillation from a “fat” document to a 

“skeletal” query, the authors propose, “is a form of translation from one language to 

another (Berger & Lafferty, 1999).”  Berger and Lafferty represent this document to 

query translation process using a statistical model.  They characterize the translation 

process as having two stages.  In the first stage, the translation analyst chooses a word w 

from the document according to a distribution l(w|d) which is called the document 

language model.  In the second stage, that word w is translated into a word or phrase q 

using a translation model t(q|w).  Thus, the statistical translation model for a single query 

term q can be described by the following equation: 

   ∑
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This model must be applied n times to account for a query containing n terms; the 

number n in this model is chosen according to a sample size model Φ(n|d).  Berger and 

Lafferty propose that a Poisson distribution with mean λ(d) can be used to calculate the 

sample size model. 
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Applying this assumption leads to the complete statistical translation model, which 

Berger and Lafferty call Model 1: 
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It should be noted that if each word can be translated only to itself (eg. p(q|t) = 1 only 

when q=t) this model decomposes into the query-likelihood model proposed by Ponte 

and Croft (Ponte & Croft, 1998).  Berger and Lafferty call this simplest version of the 

translation model Model 0. 
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 The parameters for the translation model were set empirically using the 

Expectation Maximization (EM) algorithm (Dempster et al., 1977). A simple linear 

mixture model is used to combine the background unigram model for the corpus and the 

EM-trained translation model.  The smoothing parameters were derived empirically by 

optimizing the algorithm on the TREC Spoken Document Retrieval data. While 

significant improvements over a baseline tf-idf approach were reported by this method, 

the experiments required a large corpus of training data which may not be practical in all 

cases.  An interesting corollary to this approach is that it is naturally extensible to the 

problem of multi-lingual information retrieval.   

 Murdock and Croft (Murdock & Croft, 2004) extend the translation model 

approach to sentence retrieval.  The motivation for this application of translation models 

stems from a Question Answering (QA) application; in general, most QA systems use a 

passage retrieval system for the first stage of processing.  The more accurately a passage 

retrieval system can retrieve succinct segments of text, the better the QA system is likely 

to perform overall.  A high-quality sentence retrieval system would be a strong candidate 

for application to the QA domain.  However, sentences, which are much smaller, than 

documents are too short to accurately estimate a language model.  Murdock and Croft 

(Murdock & Croft, 2004) approach this problem by using a translation model to judge 

similarity between a words in query and words in a candidate sentence.  The translation 

model allows for a looser matching strategy which identifies the relationships between 

corresponding terms which mean the same thing or are related to one another, but which 

are not the same term.  Murdock and Croft make use of the IBM translation Model 1 

(Brown et al., 1990) to rank documents according to their translation probability, given 



35 

the query.  IBM Model 1 assumes that all alignments are possible between the source 

sentence and target sentence, and constructs synthetic training data in the absence of the 

availability of a training corpus of queries and relevant documents.  Empirically, the 

results of this model were compared against query-likelihood with and without 

smoothing, and showed significant improvements over the baseline. 

In related research, Jin and Hauptmann (Jin & Hauptmann, 2001) use language 

models for document title generation.  Rather than using the document directly as the 

knowledge source for the document title generation, they introduce the idea of a “distilled 

information source” which is a sample of important content words from the original 

document.  The optimal title for the document can then be generated from this 

distillation.  The underlying premise of this method is that title generation is a “reverse” 

information retrieval task – in other words, the perfect title for a document would be the 

same as the query for which that document is an “ideal” response.  In an information 

retrieval paradigm, the generated titles for each document can be evaluated against the 

queries that are presented to the system and the documents ranked accordingly.  This 

approach is novel in that it provides a bridge from language modeling and information 

retrieval to the related tasks of text summarization and categorization. 

 

2.2.5 Summarization of Early LM Approaches to IR 

 Prior to moving on to more recent work in cluster-based language modeling, we 

feel it is valuable to consider a summary of the early work in language modeling for 

information retrieval, as almost all later works build upon a variation of one of these 

approaches.  We present this summary in Table 1 below. 
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Table 1: Chronological Summary of Early Language Modeling Approaches to 

Information Retrieval 

Method 
Language 

Model 
Basis 

Smoothing 

Approach 

Training 

Data 

Requirements 

Significance 

 

Ponte-Croft 

Query 

Likelihood 

Model 

 

Uni-gram 

Maximum 

Likelihood 

Estimate 

(MLE) 

Risk function 

which 

incorporates 

background 

word 

probabilities 

from the 

collection  

Not required  
Initial usage of 

LM in IR 

Hiemstra 

Model 
Uni-gram 

Document is 

modeled as 

an ordered 

sequence of 

random 

variables 

Linear 

interpolation 

term frequency 

and document 

frequency 

Required to set 

smoothing 

coefficients 

 

Modeling of 

documents and 

queries as an 

ordered 

sequence of 

terms; relation of 

smoothing 

approach to tf-

idf 

 

Song and 

Croft, Query 

Likelihood 

Model 

Linear 

interpolation 

of Uni-gram 

and Bi-gram 

Query-

likelihood 

model 

Good-Turing 

estimate and 

curve fitting, 

incorporating 

corpus 

document 

model 

Required to set 

interpolation 

parameters 

required to 

combine unigram 

and bi-gram 

models   

Creation of an 

extensible LM 

approach to IR  

Miller – 

Hidden 

Markov 

Model 

(HMM) 

Approach 

Uni-gram, Bi-

gram 

Two-stage 

HMM 

Second stage 

(“General 

English”) of 

the HMM 

provides 

smoothing  

Required to train 

HMM and to 

construct General 

English stage of 

the model 

Usage of HMM 

to LM for IR, 

incorporation of 

techniques such 

as blind 

feedback, feature 

dependent 

priors, query 

section 

weighting 

Berger and 

Lafferty – 

Statistical 

Translation 

Uni-gram 
Translation 

models 

Parameter 

smoothing 

based on 

document and 

background 

word 

probabilities 

Large amounts of 

training data 

required to set 

translation model 

parameters 

Application of 

translation 

models to LM 

for IR; view of 

query as a 

“distillation” or 

translation of a 

document 

Jin and 

Hauptmann – 

Title 

Generation 

Uni-gram 
Translation 

model 
N/A 

Required to set 

translation model 

parameters  

LM for IR in 

reverse; 

“distilling’ the 

ideal title for a 

document from 
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the full text 

using a 

translation 

model 

Lafferty and 

Zhai – Risk 

Minimization 

Frameworks 

Uni-gram 

Bayesian 

decision 

framework 

Markov model 

based query 

and document 

expansion 

using 

translation 

models 

Required to set 

translation model 

parameters 

Application of 

Bayesian 

decision theory 

to LM 

framework;  

Lavrenko and 

Croft – 

Relevance 

Models 

Uni-gram 
Relevance 

model 

Linear 

interpolation 

with parameter 

smoothing 

Not required 

Explicit 

modeling of 

relevance in an 

LM for IR  

 

2.2.6 Cluster-Based Language Models 

 In the general sense, cluster-based language modeling approaches use document 

clustering to organize collections around topics.  Each cluster is then assumed to be 

representative of a topic, and a language model can be created for the cluster (X Liu & 

Croft, 2004).  Cluster-based language models are most commonly used in the context of 

Topic Detection and Tracking (Kraaij & Spitters, 2003), but have been incorporated into 

other IR frameworks (X Liu & Croft, 2004) as well.  Although we choose to break out 

cluster-based language models as a separate section in this paper, one could just as easily 

group individual cluster-based modeling approaches with query-likelihood, document-

likelihood or model comparison approaches, depending on the specific nature of the 

language model employed to describe the clusters.  (We are not aware of any cluster-

based language modeling approaches to date which have employed statistical translation 

methods.)  In some sense, one might even say that cluster-based language modeling can 

trace its roots to Kalt (Kalt, 1996), which focused on statistical models for topics as 

opposed to individual documents. 



38 

One of the earliest cluster-based language modeling approaches was employed in 

the context of distributed information retrieval.  Xu and Croft (Xu & Croft, 1999) 

propose that “the task of a distributed retrieval system is first to determine which topics 

are best for a query and then to direct the searching process to those collections 

containing the topics.”  They consider that the problem of determining the most suitable 

topics for a given query can be addressed using a generative model; that is, the best topics 

for a given query are those which have a language model that is most likely to generate 

the query.  Collection selection for distributed IR is then performed by selecting the 

collections which contain the best topics.   

Later work by Liu and Croft (X Liu & Croft, 2004) proposes the use of cluster-

based language models in the context of an ad-hoc retrieval framework.  Liu and Croft 

propose two language models for cluster-based retrieval: the first is used in the ranking 

and retrieving clusters and the other uses cluster language models to smooth individual 

document language models within the cluster.  These cluster-based models are then 

integrated into both a query-likelihood and relevance model framework.  Empirical 

results show that cluster-based retrieval can potentially be more effective than document 

based retrieval.  It is specifically interesting to note the success of the cluster-based 

smoothing methods, and that “clusters generated by static clustering tend to produce 

better-quality cluster models for smoothing purposes than those generated by query-

specific clustering (X Liu & Croft, 2004).”  The authors believe that the static clustering 

methods outperform query-based clustering methods as query-based clusters may contain 

an inherent bias to a specific interpretation of a query term.  Static clustering, performed 



39 

without query text, looks at all documents in the collection and generates clusters that 

provide better coverage for all aspects of a given topic.  

 In a more recent approach, Kurland (Kurland, Lee, & Domshlak, 2005) proposes 

that a document retrieved as a part of pseudo-relevance feedback may be considered as a 

“rendition” of the original query.  Documents which are good renditions of the query may 

be considered to be pseudo-queries and considered to be a wholesale replacement for the 

original query itself. Kurland’s approach proposes that once we have created an initial set 

of pseudo-queries, the process can be repeated so that in the next iteration the algorithm 

is searching for the documents that are the best rendition of the pseudo-queries.  After the 

process is complete, the result should be a set of distilled pseudo-queries which are 

optimally informative of the user’s information need.  Kurland proposes three algorithms 

(the Viterbi Doc-Audition algorithm, the Doc-Audition algorithm, and the Cluster-

Audition algorithm) to score documents as candidate renditions of the pseudo-query.   

 The motivation behind this approach is to increase the “aspect recall” of the 

system.  The problem of “aspect recall” is described in (Buckley, 2004; Harman & 

Buckley, 2004) and can be categorized in one of four ways: 

• The IR system emphasizes one aspect of a query, and misses other required terms 

in the query  

• The IR system emphasizes one aspect of a query, but misses other aspects  

• The IR system fails to properly combine aspects in a query when returning query 

results 

• The IR system emphasizes an irrelevant aspect 
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Here, the term “aspect” is defined to mean a term feature that occurs in the query.  For 

example, in the query “What incidents have there been of stolen or forged art?” we might 

consider “stolen art” and “forget art” to be two aspects of the query.  The cluster-based 

language modeling approach suggested by Kurland considers language models for 

clusters of documents within the corpus, rather than single documents, and is based on 

the hypothesis that clusters are richer sources of information regarding corpus aspects 

than single documents alone.   

 Query drift is an issue that this particular algorithm is particularly prone to.  

“Query drift” (Mitra, Singhal, & Buckley, 1998) is a problem encountered by many 

automatic query expansion approaches; when expanding a query if non-relevant terms are 

included as a part of the expansion the resulting query may “drift” from the original 

information need.  Kurland addresses this problem by using re-scoring techniques to 

periodically re-align the pseudo-queries with the original queries.  The empirical results 

obtained from this methodology are promising when compared against a baseline 

relevance modeling approach. 

 Other cluster-based language modeling approaches include Zhang (Zhang, 

Ghahramani, & Yang, 2005), who models the generation of clusters using a Dirichlet 

process mixture model, where the base distribution can be treated as the prior of general 

English model and the precision parameter which controls the random generation process 

for creating new clusters.  Like other cluster-based modeling approaches, this was 

effectively applied to the TDT task. 

 

2.2.7 Smoothing Studies 
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Smoothing is an integral part of the language modeling paradigm and the 

performance of the smoothing component of a language model is essential to the overall 

performance of the model.  Several classes of smoothing strategies have been proposed; 

the most common has been described as parameter smoothing (X. Liu & Croft, 2005), 

and uses linear interpolation to influence the roles that multiple knowledge sources play 

in smoothing out the probability distributions of a language model. Zhai and Lafferty (C. 

Zhai & Lafferty, 2004) studied three approaches to smoothing:  Jelinek-Mercer 

smoothing, Dirichlet priors and absolute discounting, as well as the backoff versions of 

these methods.  Five test collections were used to examine the effects of each of these 

smoothing mechanisms.  For title queries (short queries), there was a clear ordering 

among the methods in terms of precision results; Dirichlet priors performed better than 

absolute discounting, which performed better than Jelinek-Mercer.  Overall, Dirichlet 

priors had an average precision performance that was significantly better than the other 

two methods.   For longer queries, both Jelinek-Mercer and Dirichlet priors have a better 

performance than absolute discounting.  These results highlight the somewhat counter-

intuitive result that there is more correlation between query length and query  

A later study by Smucker and Allan (Smucker & Allan, 2007) investigate the 

causes behind the improved performance yielded by Dirichlet prior smoothing performs 

over Jelinek-Mercer smoothing for short queries, which are assumed to be most 

characteristic of a query that would be posed by a user. Both Dirichlet prior and Jelinek-

Mercer linearly combine the maximum likelihood estimated (MLE) document model 

with the MLE model of the collection. Both are discounting smoothing methods that 

reduce the probability of the words seen in the document and reallocate the probability 
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mass to words not seen in the document. The only difference between the two smoothing 

methods that can be observed is that Dirichlet prior smoothes longer documents less and 

Jelinek-Mercer smoothes all documents to the same degree.  Intuitively this makes sense 

since it stands to reason that the MLE model of a short document contains less observed 

information than the MLE model of a long document.  Smucker and Allan found that 

Dirichlet prior’s performance advantage comes more from its penalization of shorter 

documents rather than from its estimation process for long documents; in other words, 

Dirichlet prior is able to correctly reduce the scores of short documents.  This research 

points to the importance of factors such as document length in the language modeling 

process.  

 

2.2.8 Semantics and the Language Modeling Framework 

Semantic smoothing (X. Liu & Croft, 2005) is one area in which there are 

significant opportunities for the integration of context-sensitive semantic knowledge into 

the language modeling framework.  Translation models may be thought of as one form of 

semantic smoothing, since a translation model provides a mechanism for mapping based 

on document-query training sets.  However, translation models do not provide any 

mechanism for sense disambiguation; as such, terms that appear with high likelihoods in 

two different senses will be mixed together.  For example, the term “apple” may appear 

in conjunction with the word “computer” and the word “pie” both with high likelihoods.   

Zhou et. al. (Zhou, Hu, Zhang, Lin, & Song, 2006) proposes a context-sensitive 

semantic smoothing as a part of the language modeling framework, which introduces the 

concept of a topic signature for a document or query and then uses these topic signatures 
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to train the translation model.  Zhou defines a topic signature to be an order-free 

relationship between two concepts, where a concept represents a set of synonymous 

terms within a domain.  For the biomedical domain, the Unified Medical Language 

System (UMLS) Metathesaurus (http://www.nlm.nih.gov/research/umls) is one source for 

concept definitions.  Incorporation of semantic information by way of topic signatures 

alleviates the sense disambiguation (synonymy and polysemy) problems that are incurred 

with previous translation model approaches. This approach presents a different view of a 

document representation within the language modeling framework; a document is 

presented as a weighted set of topic signatures and concepts.  An Expectation-

Maximization (EM) (Dempster et al., 1977) based training method is used to train the 

context-sensitive model.  The empirical results of this semantic approach showed 

significant improvements over the baseline on TREC Genomics 2004 (Hersch & al., 

2004) and 2005 (Hersch & al., 2005) data.  One drawback to this ontology-based 

approach, however, is that it requires the existence of domain-specific ontological 

resources which are not often available.  This may make such an approach difficult to 

apply to a broad range of fields. 

Another approach that may lend itself to incorporation within a semantic smoothing 

framework is Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999).  The 

foundation of the PLSA approach is an underlying Aspect Model which proposes that we 

can define words and documents in terms of “aspects” which are associated with a latent 

class variable.   

The Aspect Model is based on two assumptions: 

• Words and documents are independent of one another (bag of words assumption) 
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• Documents and words are both conditioned on a latent aspect (z) which may be 

thought of as a concept 

The Aspect Model has several intuitively appealing features.  First, by conditioning 

words and documents on a latent variable, the zero-frequency problem is addressed.  

Secondly, a priori knowledge is not required about the concepts within the corpus for the 

algorithm to work effectively.  And finally, the usage of probabilistic methods defines a 

generative model of the data which is better able to address common text processing 

issues such as synonymy and polysemy.  PLSA uses the following approach which is 

depicted graphically in Figure 4: 

• Select a document d with probability P(d) 

• Pick a latent class z with probability P(z|d) 

• Generate a word with probability P(w|z) 

• Formulate the probability of observing a pair P(d,w) while the latent variable z is 

discarded 

Figure 4:  A Conceptual Model of Probabilistic Latent Semantic Analysis and the 

Aspect Model 

 

PLSA is described mathematically by the following equation: 
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Intuitively, PLSA is based on maximizing the log-likelihood of the divergence between 

the empirical distribution of observed word-document pairs and the probabilistic model 

P(w,d).  PLSA uses the EM (Dempster et al., 1977) algorithm to estimate the 

probabilities P(z), P(w|z) and P(d|z) for latent variable models.   The E-step estimates the 

posterior probabilities of the latent variables, while the M-step is used for parameter 

estimation based on expected statistics.  The resulting set of PLSA latent concepts (z 

values) are appealing because they are sense disambiguated without requiring availability 

of any external knowledge or ontological resources.  

 

2.2.9 Language Modeling and XML Retrieval 

Ogilvie and Callan (Ogilvie & Callan, 2003) believe that the information 

contained in the structure of an XML document can be used to improve document 

retrieval for structured knowledge sources. In order to leverage this information, they 

model document structure as an integral part of a document  language model. 

Specifically, XML documents are modeled as trees where each node in the tree 

correspond directly with tags present in the document. For each document node in the 

tree, a language model can then be estimated. Language models for leaf nodes with no 

children are estimated directly from the text of the node. The language models for other 

nodes in the tree are estimated by taking a linear interpolation the language model of the 

text contained in that node alone, and the language models of all child nodes in the 

document’s tree.  The language models for each node are then smoothed via a 

interpolation with a collection language model.  The collection model used for the 



46 

interpolation may be specific to the node type, which provides some measure of context 

sensitive smoothing, or the collection model may be one large model estimated from 

everything in the corpus, which gives a larger sample size. 

In a subsequent work, Ogilvie and Callan (Ogilvie & Callan, 2006) focus on the 

problem of parameter estimation for the hierarchical language model for XML 

documents.  Specifically, the parameters that are considered are the interpolation 

parameters which are used to combine the language models at a given node with the 

language models of the node’s children.   Unlike their previous work (Ogilvie & Callan, 

2003), Ogilvie and Callan make a simplifying assumption; they do not recursively 

smooth the language models when they traverse the structure of the XML document. 

Instead, they linearly interpolate the parent’s unsmoothed language model, each child’s 

unsmoothed language model, the document’s unsmoothed language model, and the 

collection language model. This simplification allows for a cleaner formulation of the 

parameter estimation problem which enables application of a modified version of the EM 

algorithm which the authors call Generalized Expectation Maximization (GEM).  The 

proposed approach first trains the EM algorithm, but observes that using positive 

examples alone places the most weight on the document language model which results in 

very poor retrieval performance.  To counter this effect, negative examples are included 

in the model; negative examples are non-relevant components that come from documents 

that contain relevant components.   Conceptually, the GEM algorithm maximizes the 

probability that the language models of the positive samples will generate the query term 

while minimizing the likelihood that the language models of the negative samples will 

not generate the query term.  The approaches presented in (Ogilvie & Callan, 2003, 2006) 
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are validated empirically on data from the INEX CO tasks, with performance that is 

mixed but shows promise for further development.   

 

2.2.10 Language Modeling and Web Retrieval 

The Divergence from Randomness (DFR) framework (Amati & Van Rijsbergen, 

2002) has applied the language modeling paradigm to Web retrieval.  The DFR 

framework has its origins in the early work on automatic indexing that observed that the 

distribution of informative content words in a document collection deviates from the 

distribution on non-specialty words.  “Specialty words, like words belonging to a 

technical vocabulary, being informative, tend to appear more densely in ‘elite’ documents 

whereas non-specialty words, such as the words that are usually included a stop list, are 

randomly distributed over the collection (Amati & Van Rijsbergen, 2002).”  Early work 

in automatic indexing by Harter (Harter, 1975) proposes that non-specialty words can be 

modeled by a Poisson distribution with some mean λ.  In Harter’s model, a “specialty 

word” can be systematically detected by measuring the extent to which its distribution 

differs from a Poisson distribution for the entire document collection.  A secondary 

hypothesis of Harter’s model is that a “specialty word” follows the Poisson distribution 

with mean µ when only a small set of ‘elite’ documents is considered, where µ is much 

larger than λ.  In Harter’ model, the set of ‘elite’ documents was defined as a hidden 

variable and the estimation of the parameter µ was problematic.  In the DFR model, the 

set of elite documents is assumed to be all documents which contain the specialty term.   
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The DFR framework develops this 2-Poission model by proposing that the weight 

of a term in a document is a function of two probabilities, Prob1 and Prob2, which are 

related by the following equation: 

)Pr1(

12
2Prlog

ob
obw

−−=    (23) 

The distribution Prob1 is derived using a methodology similar to that used by Harter, but 

supposes that words which bring little information are randomly distributed on the whole 

set of documents, rather than being distributed by the Poisson model. The DFR 

framework provides different basic probabilistic models (Prob1) for randomness; among 

these are the binomial distribution, the Poisson distribution, Bose–Einstein statistics, the 

inverse document frequency model, and a mixed model using Poisson and inverse 

document frequency.  The second probability, Prob2, is the probability of occurrence of 

the term within a document that is a part of the ‘elite’ set of documents for the term.  1 – 

Prob2 can be thought as “the risk of accepting a term as a good descriptor of the 

document when the document is compared with the elite set of the term (Amati & Van 

Rijsbergen, 2002).”   The formula in equation 22 can be re-written as: 

21 * InfInfw =   where    (24) 

   121 Prlog obInf −=   and  2Pr1 obInf s −=  

Here, the terms Inf1 and Inf2 can be thought of as two informative content functions – the 

first related to the informative content of the term with respect to the collection and the 

second with respect to its set of elite documents.     

In the context of the DFR framework, term frequency normalization can be 

thought of as analogous to smoothing in a pure language modeling framework.  Dirichlet 

prior term frequency normalization is studied extensively in (B He & I Ounis, 2005; B. 
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He & I Ounis, 2005), and an automatic theoretically-driven tuning methodology for the 

Dirichlet Priors normalization is presented which models term frequency normalization 

as a function of the correlation between the normalized term frequency and the document 

length.   

Empirically, the DFR framework was one of the best-performing runs of the 

TREC 2002 WEB Track (Craswell & Hawking, 2002), and showed promising results 

when a Bose-Einstein model of randomness was incorporated into the base framework 

described above.  Later work has focused on the application of the DFR framework to 

large collections, and specifically to web-document finding tasks (He & Ounis, 2007).  

The Terrier Information Retrieval Platform (Ounis et al., 2006) is built on the foundations 

of the DFR framework and is an open-source retrieval engine that has been applied for 

both English and non-English (Macdonald, Lioma, & Ounis, 2007) Web retrieval tasks. 

 

2.2.11 Challenges and Issues 

Allan et. al. [59] presents a comprehensive discussion of near and longer term 

challenges in Information Retrieval to which language modeling may be applied.  These 

challenge areas include “retrieval models, cross-lingual retrieval, Web-search, user 

modeling, filtering, Topic Detection and Tracking (TDT), classification, summarization, 

question answering, meta-search and distributed retrieval, and multimedia retrieval, 

information extraction and testbeds.”  Although this paper was written several years ago, 

the majority of the challenges and issues presented are still pertinent to state-of-the-art 

Information Retrieval systems today.  It is beyond the scope of this paper to discuss each 

of the challenge   areas in detail; instead we will focus on three areas that are of particular 
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interest to us:  retrieval models, cross-language information retrieval and question 

answering. 

Empirically, retrieval models that incorporate relatively simple language 

modeling techniques have produced promising results over the past decade. The majority 

of these approaches have used a unigram language model, although a few have explored 

approaches based on bi-gram and tri-gram models.  This relatively simplistic view of the 

document as a “bag of words” is an opportunity for future research.  In his survey of 

statistical language modeling techniques, Rosenfeld [13] says, “ironically, the most 

successful statistical language modeling techniques use very little knowledge of what 

language really is … only a handful of attempts have been made to date to incorporate 

linguistic structure, theories or knowledge.”  The incorporation of these types of 

formalized structures into a language modeling framework may help to increase the 

effectiveness of language modeling approaches. In addition, further improvements in the 

language modeling paradigm “are likely to require a broad range of techniques in 

addition to language modeling [59].”  This is especially true if one considers the 

changing landscape of information resources; grass-roots innovations such as wikis, 

blogs, social bookmarking and even social networking applications such as MySpace and 

Facebook present unique challenges and opportunities for modeling language.  

Hierarchical models such as those proposed by Ogilvie [49] are promising when one 

considers retrieval applications that merge unstructured and semi-structured data; it may 

be likely that future approaches build on this foundation when considering language data 

from diverse sources. 
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A second area challenge area is cross-language information retrieval research.  

Allan et. al. [59] states that “though initially the Web was dominated by English 

speakers, now less than half of existing web pages are in English.”  If this statement was 

true in 2002, today the importance of cross-language information retrieval is even more 

evident.  From a humanitarian standpoint, one may consider that we have a social 

responsibility to ensure that cross-language information search and retrieval techniques 

are not limited to those languages for which large amounts of data are available – such as 

English, Spanish, French, Arabic, and Chinese.  In order to effectively extend language 

modeling techniques to languages for which less data is available, existing methods 

should look to develop techniques for which little or no training data is required.  If such 

research is not undertaken, the distinction between those who have access to information 

and those who do not will be made along language boundaries, and the information gap 

will widen as time goes on.  

A final challenge area for language modeling that is of particular interest for this 

work is Question Answering (QA).  Recent developments in Question Answering 

research have started to address many of the topics that were discussed in Allan [59].  

Recent TREC conferences [60-62] have considered reliable factoid QA, interactive QA, 

development of user and session models which require that a given question be cognizant 

of the QA dialogue that preceded it and novelty detection within a QA setting (eg. “Tell 

me something interesting about the topic that I have not seen yet.”)  In addition, recent 

QA approaches [63] have considered merging of structured and semi-structured 

information (such as information from knowledge sources such as Wikipedia and 

WordNet) to improve the QA reliability.  The TREC Genomics Track [64] can also be 
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thought of as a QA exercise; in those experiments, researchers must return the answers to 

broad questions with some source document context.  Despite the recent focus in this 

area, however, there are still many aspects of QA that require development or 

improvement.  Within the QA application area, language modeling has largely been used 

to improve the first stage of processing which collects candidate documents and passages 

that are then passed on to an Information Extraction (IE) engine which determines the 

specific response words or phrases.  A future goal for language modeling may be to 

provide for extensions that allow for integration with the second stage of QA – either by 

the incorporation of knowledge patterns or via statistical mechanisms that can be 

integrated into the IE or Natural Language Processing (NLP) techniques commonly used 

in downstream QA processing. 

 

2.3 Question Answering Research and Trends 

Research in natural language question answering has a history dating back to 

1959 (Simmons, 1965).  At that time a new paradigm was introduced into computer 

science spurred by Chomsky’s research in linguistic analysis (Chomsky, 1956) which 

categorized language into syntactic, semantic and phonological components.  For the first 

time, language could be categorized by a defined structure, and translation between 

languages was viewed as a set of transformational rules to morph the meaning of one 

language into another.  The first generation of QA systems that came out of this new 

paradigm included social conversation systems, machine translation systems and 

programs that attempted to answer questions from English text (Simmons, 1965).  



53 

However, these QA systems were uniformly criticized for their limited semantic analysis 

capability (Simmons, 1965). 

The next generation of QA systems included conversation machines, fact retrieval 

systems, mathematical word processors and natural language text processors (Simmons, 

1970).  The most famous of these early systems is BASEBALL (Green, A., Chomsky, & 

Laughery, 1961) which was a fact retrieval system that processed and returned data 

related to the game of baseball.  BASEBALL used a pseudo-natural language interface 

for question input; a similar interface was used to insert facts (knowledge) into the 

system.  Questions were processed by first breaking down sentences into candidate 

elements, and then evaluating the list of semantic features in a sentence against the 

internal knowledge source. 

Winograd (Winograd, 1972) and Lehnert (Lehnert, 1977) present formal studies 

of the question answering paradigm, including knowledge representation models and 

knowledge extraction models.  Lehnert presents the first comprehensive question 

taxonomy; she divides the full spectrum of possible questions into one of 13 categories 

and uses this taxonomy to develop the first conceptual theory of question answering.  

Because both Winograd and Lehnert propose solutions to a “generic” QA problem; their 

models are applicable to both open domain and domain-specific systems 

The reinvigoration of research in QA in the mid-1990’s may be attributable to two 

events:  the creation of WordNet (G. A. Miller, 1995) and the establishment of a Question 

Answering Track at the 8
th
 Text Retrieval Conference (TREC) (Voorhees, 1999).  

WordNet, (G. A. Miller, 1995) created at Princeton University, is the first instance of a 

comprehensive  on-line, universally accessible lexical database of the English language.  
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“English nouns, verbs, adjectives, and adverbs are organized into sets of synonyms, each 

representing a lexicalized concept. Semantic relations link the synonym sets (G. A. 

Miller, 1995).”  WordNet defines the vocabulary of the English language as a set of 

form-sense pairs, where the form is the string that uniquely identifies any given word and 

the sense is an element from a set of meanings.  This structure allows WordNet to aid in 

the resolution of word synonymy (different words that share the same sense) and word 

polysemy (a single word that has more than one sense) – two classical problems that have 

faced QA systems from their early history (Simmons, 1970). 

In 1999, the first TREC Question Answering Track was run (Voorhees, 1999).  

This event established comprehensive evaluation criteria for QA systems; the first TREC 

QA Track was run against data from the Ad-hoc Retrieval Track over a set of 198 

questions.  (An example of TREC QA questions and example documents from the 

AQUAINT corpus are presented in Appendix A).Human judges determined the 

correctness of each run submitted, and a final set of question-answer pairs were 

established which could then be used to assess the performance of subsequent systems.  

Twenty different organizations participated in the Track, and most followed a similar 

baseline strategy:   (1) Questions were first classified into categories that would enable 

the prediction of the type of returned entity using heuristic methods.  For example, “who” 

questions returned entities of type “Person”;  (2) The systems then performed a “shallow 

parse” of the documents returned to detect entities of the same type as the expected 

answer;  (3) In the event that no appropriate entity was found, the systems defaulted to 

passage retrieval based on established IR methods (Voorhees, 1999). 
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Over the past decade, a number of groups have tackled the formidable problem of 

TREC open domain QA, each with their own unique perspective and focus.  Moldovan 

and Harabagiu (Moldovan et al., 2002) emphasize the importance of lexical chains in the 

question answering process.  “Lexical chains improve the performance of question 

answering systems in two ways:  (1) increase document retrieval recall and (2) improve 

the answer extraction by providing the much needed world knowledge axioms that link 

question keywords with answer key concepts (Moldovan et al., 2002).”    Conceptually, a 

lexical chain is a sequence of semantically related words that tie two concepts together.  

Lexical chains can be used to re-write the original query so that the terms present in the 

query are more easily relatable to the text fragment that contains the answer.  For 

example (S. Harabagiu, Moldovan, Rus, & Morarescu, 2001), given the question “How 

many dogs pull a sled in the Iditarod?” the word sled can be replaced with the word 

“harness” by mining WordNet.  This allows the question to match the text fragment 

“Race rules require mushers to arrive in Nome with at least five dogs in harness.”  

Moldovan and Harabagiu have developed several QA systems that have 

performed well in the TREC QA experiments.  They submitted the LASSO system in 

TREC 9 (Moldovan & Harabagiu, 2000) and the Falcon system in TREC 10 (S. 

Harabagiu et al., 2001).  Subsequently, they commenced research on the PowerAnswer 

and PowerAnswer-2 systems which have had exceptional results in recent TRECs (S. 

Harabagiu et al., 2005).  At TREC 2005, PowerAnswer-2 had the best performance for 

both factoid and list questions, and ranked third in performance for the “Other” 

component (Voorhees, 2005a), which is designed to evaluate how well the QA engine 

can locate information nuggets not previously known. The PowerAnswer-2 system is 
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comprised of a Question Processing Module, an Answer Processing Module, and World 

Knowledge Axioms that are fed into a Logic Prover module called COGEX (S. 

Harabagiu et al., 2005), which uses semantic information and abductive logic to score 

answers.  Details of the operation of COGEX beyond the scope of this paper, but can be 

found in (Moldovan, Clark, & Harabagiu, 2003). 

Although less overtly successful (Humphreys, Gaizauskas, Hepple, & Sanderson, 

1999; Scott & Gaizauskas, 2000), the QA systems developed by the University of 

Sheffield during recent TREC experiments are valuable for their exploratory nature.  For 

example, the fundamental coupling of IR and QA is questioned by the group at Sheffield.  

“Experiments suggest that when using the top 20 relevant passages, answer bearing 

passages are found only 66% of the time (Gaizauskas et al., 2003).” Thus, they argue, for 

those systems working with the top 20 retrieved passages, an upper bound of 66% was 

placed on answer extraction even before any processing took place.  They experiment 

with using a Boolean IR system called MadCow (Gaizauskas et al., 2003) to increase the 

effectiveness of the IR component of the overall QA system.  Unlike probabilistic IR 

systems such as Okapi (S. E. Robertson, Walker, & Beaulieu, 2000), a Boolean IR 

system allows the user to input the query as a sequence of terms linked together with 

Boolean operators (Gaizauskas et al., 2003).  The IR system returns documents (or 

sentences or passages) which exactly match the Boolean query specified.  A Boolean IR 

system gives the user more control over the documents returned, but requires more effort 

during the query formulation process.  Additional experiments performed by the 

University of Sheffield group explored various methods of corpus pre-processing, 

answering “definition” questions, and improving part-of-speech tagging.  All of these 
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efforts were started in 2003 and continued through 2004, 2005 and 2006 (Gaizauskas et 

al., 2005; Gaizauskas, Greenwood, Hepple, Roberts, & Saggion, 2004; Gaizauskas et al., 

2003; M. A. Greenwood, Stevenson, & Gaizauskas, 2006), though the current set of 

results have not yet proved conclusive. 

The group from the Tilburg University (Buchholz, 2001; Buchholz & Daelemans, 

2002) propose a Question Answering System based on the usage of the World Wide Web 

as an alternate knowledge source.  Their Shallow Parsing for Question Answering 

(Shapaqa) component uses a complex set of grammatical rules to increase the 

effectiveness of their part-of-speech tagger.  The results of the system against the TREC 

ACQUAINT corpus are compared against results derived using the World Wide Web as 

a knowledge base.  While initial results of the system were mixed, the experiments did 

support the assertion that facts which occur in the corpus more frequently are more 

reliable than those occurring less frequently.   

Other approaches to QA have made heavy use of IE techniques.  A full discussion 

of IE techniques and approaches is beyond the scope of this thesis, and the reader is 

encouraged to review (Gaizauskas, 1998) for a more comprehensive view.  Molla-Aliod 

(Molla-Aliod, Berri, & Hess, 1998) proposes a method of Answer Extraction which is 

rooted in IE, and extracts answers to common Unix question from 30 Unix manual pages.  

The proposed solution is not as ambitious as a technique that would address the full-

blown Question Answering problem since the question domain and the corpus from 

which the answers will be mined are both part of a narrow domain.  However, the system 

successfully demonstrates the application of IE to QA. 
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Srihari (Srihari & Li, 2000) develops a more sophisticated IE-based QA system 

called Textract centered around “a hierarchical, three-level architecture which is domain-

independent throughout.”  The three levels of the system address different levels of entity 

extraction.  The first level is called Named Entity and deals with the identification of 

simple, individual entities.  The second level, Correlated Entity, “is concerned with 

extracting pre-defined multiple relationships between entities.”  And the final level is to 

extract General Events which deal with subject-verb-object structures that can be used to 

identify relationships between entities and actions.  Using all three levels of IE, Textract 

proposes the formulation of a framework that can be extended to handle a breadth of 

domain independent QA scenarios.  

Other interesting approaches QA have included designing a system patterned after 

the Model-View-Controller design (Dalmas & Webber, 2004), usage of information 

fusion techniques (Dalmas & Webber, 2005), and the application of the Mutual 

Information statistic to estimate question categories (Mann, 2001).  In addition, 

researchers at MITRE have explored areas of the QA space adjacent to the problems 

presented by the TREC experiments:  specifically, they have experimented with reading 

comprehension systems (Hirschman, Light, Breck, & Burger, 1999) and human-computer 

dialogue systems (Doran, Aberdeen, Damianos, & Hirschman, 2001); this work can be 

seen as a direct descendant of the conversation and word problem solving systems of the 

1960’s. 

To date, the efforts in domain-specific question answering have been limited.  

Zweigenbaum (Zweigenbaum, 2003) presents survey of question answering experiments 

that had been run prior to 2003 in the biomedical domain.  He concludes that “no specific 
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evaluation of medical QA has yet been performed (Zweigenbaum, 2003).”  In 2006, the 

TREC Genomics Track introduced a QA component (Hersh, Cohen, Roberts, & 

Rekapalli, 2006) to extend the ad-hoc retrieval tasks that had been run in the preceding 

TREC Genomics Tracks (Hersh, Yang, Bhupatiraju, Cohen, & Roberts, 2005).  The main 

component of this track required the retrieval of passages that directly answered 

questions.  Up to 1000 passages could be submitted for every question, and the MAP 

(Mean Average Precision) measure was used to evaluate results. The responses to this 

Track were enhanced by the use of several domain-specific knowledge sources such as 

Unified Medical Language System (http://www.nlm.nih.gov/research/umls/) and the 

Gene Ontology (http://www.geneontology.org/).  A key architectural element in several 

competing systems was a concept recognition component (Caporaso et al., 2006; 

Trieschnigg, Kraaij, & Schuemie, 2006), which matched known concepts with terms 

found in questions and documents against a knowledge source such as a thesaurus.  “The 

use of a thesaurus allows the identification of multi-word terms and the mapping of 

synonyms to one concept (Trieschnigg et al., 2006).”  

Despite variation in evaluation measurements, the results of the 2006 TREC 

Genomics Track (Hersh et al., 2006) on the whole surpass open-domain TREC QA 

results (E. M. Voorhees & D. K. Harman, 2005) in terms of accuracy and precision.  

However, the Question Answering component of the TREC Genomics Track was ended 

in 2007 (Hersh et al., 2006) which may indicate a decrease in interest in QA for the 

biomedical domain.  While the TREC Legal Track (http://trec-legal.umiacs.umd.edu/) 

also focuses on domain-specific retrieval tasks, no specific QA tasks are planned for that 

area. 
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2.4 Candidate Document Selection 

Two recent forums that highlight research in Candidate Document Selection are 

the Information Retrieval for Question Answering (IR4QA) Workshops (Gaizauskas, 

Hepple, & Greenwood, 2004) that occurred in 2004 as a part of the ACM Special Interest 

Group in Information Retrieval (SIGIR) and in 2008 as a part of the International 

Conference in Computational Linguistics (COLING) (M. Greenwood, 2008).  Both 

workshops consider a high-level Question Answering architecture that is similar to the 

two-stage approach that we use as the foundation for this work.  They propose that 

limited attention has been paid to the first stage (the IR stage) of the QA architecture, and 

seek to draw attention to work explicitly being done in IR that specifically addresses the 

challenges raised by QA.  Some of the broader issues that are discussed in the workshop, 

which might be considered fundamental challenges of Candidate Document selection, 

include: 

• How can a question be pre-processed to generate a query that is then sent on 

to an IR system?   

• How can the document collection be most effectively indexed to include 

significant information that is pertinent to QA? 

• How should the similarity metrics that are commonly used to determine 

relevancy be modified for QA? 

• Can passages or even sentences be returned in response to a query? 

In the remainder of this section, we describe recent approaches to Candidate Document 

Selection in the context of these questions.  We propose that there are three broad 
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categories of approaches to Candidate Document Selection:  1) question to query pre-

processing approaches, 2) IR4QA similarity modeling approaches, and 3) passage and 

sentence retrieval approaches.  Each of these approaches is discussed in detail in the 

following sub-sections. 

 

2.4.1 Question to Query Pre-processing Approaches 

 Bilotti  (Bilotti, Katz, & Lin, 2004) examines different approaches for handling 

morphological variation in question terms, specifically in a Boolean IR setting.  In 

particular, they compare the use of Porter stemming at indexation time to an approach 

using morphological expansion at query time.  In the latter, a term is replaced with an 

OR-ed set of its morphological variants, where the morphological variants may be given 

an equal or lesser weight than the original term.  Their results indicate that stemming 

leads to lower recall, while expansion leads to higher recall.  The approach that gives 

different terms differing weights performs above that where all morphological variants 

are weighted equally.  It should be noted here that in this paper they make the important 

assertion that recall is of primary importance in IR4QA systems.  We make a similar 

assertion when we propose our own approach for Candidate Document Selection later in 

this text. 

 Another query expansion approach is presented by Negri (Negri, 2004).  Negri 

proposes an approach that uses relevance feedback to help sense-disambiguate words in 

the query.  Instead of solving the difficult problem of word sense disambiguation on short 

questions, this approach shifts the problem o the easier one of performing word sense 

disambiguation within the context of feedback documents.  So, for example, the top N 



62 

documents returned from an initial query are used as context which is then used to sense 

disambiguate the query terms.  Terms which are semantically related (using WordNet (G. 

A. Miller, 1995) as an external source of semantic relationships) to the appropriate sense 

of each disambiguated word are then used to expand the query.  Presented results for this 

technique show some improvement in recall for the top 50 documents.  

 Dercynski (Derczynski, Wang, Gaizauskas, & Greenwood, 2008) proposes a 

novel approach in which answer texts from previous TREC QA evaluations are paired 

with queries and analyzed in an attempt to identify performance-enhancing words.  These 

words are then used to evaluate the performance of a query expansion method.  Data 

driven extension words were found to help in over 70% of difficult questions, specifically 

by improving recall in the expanded query set.  Simple blind relevance feedback (RF) 

was correctly predicted as unlikely to help overall performance, and an possible 

explanation is provided for its low value in IR for QA.  Dercynski considers that 

relationships exist between query words and performance-enhancing words might be 

mined and used to enhance simple blind relevance-feedback approaches.  

 Saggion (Saggion, Gaizauskas, Hepple, Roberts, & Greenwood, 2004) takes a 

different route to query formulation by focusing on a Boolean IR environment.  They 

systematically consider a number of strategies for the construction of boolean queries 

from natural language question and the ranking of results returned by these queries.  

These include expanding the query by disjoining (OR-ing) WordNet synonyms or 

morphological variants of query terms, and “relaxing” the query by progressively 

discarding query terms with low inverse document frequencies.  Saggion also 

experiments with different methods of handling proper names and quoted strings, and 
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experimenting with different sized windows within which terms are constrained to match.  

The results of these experiments show that while the Boolean IR strategies considered do 

not match the results for state-of-the-art retrieval systems at 200 documents retrieved.  

However, for results at lower ranks they do offer reasonable coverage for small passages, 

which may be helpful to some QA systems depending on the QA system’s overall ability 

to extract answers from retrieved passages. 

 A lexico-semantic approach to query expansion for passage retrieval is proposed 

by van der Plas (van der Plas & Tiedemann, 2008).   They use primarily corpus-based 

methods to construct the their lexical resources and evaluate their techniques on the 

Dutch Cross-Language Evaluation Forum (CLEF) QA Track (Peters, 2006, 2007, 2008).  

This corpus-based approach, however, does not show significant improvements over the 

baseline.  

 

2.4.2 IR4QA Similarity Modeling 

Stoyanchev (Stoyanchev, Song, & Lahti, 2008) proposes an approach to matching 

queries with documents that considers phrases which are automatically identified from 

previous questions as exact match constituents to search queries. This approach uses past 

questions in the QA series as a knowledge base that can be used to mine similarity 

relationships for future queries.  The results show an improvement over baseline on 

several document and sentence retrieval measures on the TREC Web dataset (E. M. 

Voorhees & D. Harman, 2005). A 20% relative improvement is achieved in MRR for 

sentence extraction on the TREC Web dataset when using automatically generated 

phrases and a further 9.5% relative improvement when using manually annotated phrases. 

These results, however, should be tempered by the fact that queries run on the 
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ACQUAINT dataset (the testbed for TREC QA) showed no effect on IR performance 

when using exact phrase-based matching. 

In a different vein, Monz (Monz, 2004) proposes a novel proximity-based 

approach to document retrieval for QA called minimal span weighting.  The approach 

uses a parameterized combination of three factors in computing query-document 

similarity:  1) a conventional global query-document similarity score, 2) the minimum 

size of the document text window that covers all terms common to the query and the 

document, and 3) the ratio of matching terms in a query-document pair to the overall 

query length.  Experimental results show that approach leads to significant improvement 

when compared with state-of-the-art document retrieval approaches. 

 

2.4.3 Passage and Sentence Retrieval Approaches 

 Cui (Cui, Kan, Chua, & Xiao, 2004) describes a set of detailed experiments on 

ranking retrieved sentences for use in responding to definitional questions.  The utility of 

ranking for various types of information is considered, including words co-occurring with 

the definition target in external resources such as WordNet or Wikipedia.  Hard (proper 

noun) and soft (descriptive) definitional patterns are acquired using both supervised and 

unsupervised techniques.  Results show that external resources are helpful, and that 

machine-learned definitional patterns outperform manually (heuristically) constructed 

ones.  In general, the results show that soft patterns outperform hard patterns, and that the 

highest performance gains are achieved when supervised techniques are used to 

supplement unsupervised ones. 

 Usunier (Usunier, Amini, & Gallinari, 2004) also applies a machine learning 

approach to the task of passage retrieval.  Specifically, they focus on the problem of re-
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ranking the passages returned by a conventional retrieval engine.  A series of baseline 

ranking functions are applied to generate a number of scores for each passage, and then 

the final ranking of the passages is based on a weighted combination of these scores.  The 

weights applied to create the final combination are learned using a boosting algorithm, 

and the QA set is split to provide the training and test data.  The results show significant 

improvement over the initial ranking produced by the IR engine. 

 Tiedemann (Tiedemann & Mur, 2008) considers the question:  what is a passage?  

Past approaches to passage retrieval have typically focused on fixed-size windows.  

Tiedemann investigates several ways of dividing documents into passages. In particular, 

the study considers semantically motivated approaches using co-reference chains and 

discourse clues compared with simple fixed-size window-based techniques. The results 

of the experiments show the somewhat surprising result that the simple techniques using 

fixed sized windows outperform the semantically motivated approaches.  This indicates 

that uniformity in size seems to be more important for passage level retrieval than 

semantic coherence.  Related research performed by (Khalid & Verberne, 2008) shows 

the effectiveness of sliding fixed-size windows compared with disjoint windows.   

 White and Sutcliffe (White & Sutcliffe, 2004) present the results of a manual 

investigation in which 50 TREC factoid questions are compared with the sentences in the 

ACQUAINT corpus which contain their answers.  The goal of the study was to identify 

the range of morphological and semantic transformations linking the query terms to 

related sentence terms, and the relative importance of each term.  The results of the study 

are important to consider when designing a sentence retrieval approach; specifically, their 

results show the importance of hypernyms and word co-occurrence mappings.  In terms 
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of the research presented in this paper, these qualitative results support our use of 

statistical methods that are based on word co-ocurrence relationships (PLSA).  

Furthermore, the study also suggests that a high proportion of the TREC questions may 

have a supported answer contained within a single sentence.  (This was true for 90% of 

the 50 questions considered.) 

We have previously mentioned the work of Murdock in the area of sentence 

retrieval (Murdock & Croft, 2004) when discussing statistical translation models in 

Section 2.2 of this text.  Although we do not re-state that discussion here, it should be 

noted that Murdock’s work falls into this category of approaches. 

 

2.5 Answer Validation 

In recent years, Answer Validation has become a topic of significant interest within 

the Question Answering community.  It is the goal of open domain QA systems to search 

for answers to a natural language question either on the Web or in a local document 

collection. The majority of the QA techniques discussed in Section 2.3 propose methods 

for extracting the text fragments containing candidate answers from the document 

collection; in other words, they focus on the Answer Extraction process discussed in our 

QA architecture.  The output of the Answer Extraction process can be considered to be a 

set of text fragments and their associated scores or rankings; in this text we refer to these 

text fragments as candidate answers. 

In this context, automatic techniques for Answer Validation are of great interest for 

the development of open domain QA systems. The availability of a completely automatic 

evaluation procedure for evaluating a candidate answer makes it feasible for QA systems 
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to generate and test approaches. For example, “until a given answer is automatically 

proved to be correct for a question, the system will carry out different refinements of its 

searching criteria checking the relevance of new candidate answers (B Magnini, M Negri, 

R Prevete, & H Tanev, 2002a).” In addition, given that most of the QA systems rely on 

complex architectures and the evaluation of their performances requires a huge amount of 

work, the automatic assessment of the relevance of an answer with respect to a given 

question has the potential to speed up both algorithm refinement and testing. 

Recent approaches to are showcased in the Answer Validation Exercise (AVE) which 

is conducted as a part of the Cross-Language Evaluation Forum (CLEF) Question 

Answering Track (Peters, 2006, 2007, 2008).  The CLEF AVE task considers a set of 

triples in each of the languages in which CLEF is run:  Bulgarian, German, English, 

Spanish, Finnish, French, Italian, Dutch and Portuguese.   These triples consist of a 

question, a candidate answer and a passage of supporting text.  The goal of the exercise is 

to determine whether the question is correctly answered on the basis of the supporting 

text.  In effect, systems must provide a “YES” or “NO” Answer Validation judgment 

decision for each triple.  The results of the decisions are then judged by human assessors 

in each language.  The baseline is a system that always answers “YES” to every question-

answer-text triple.  Typically, Answer Validation systems that enter the CLEF 

experiments run in multiple languages; systems are compared based on how well they 

perform for each language individually and overall across all the languages for which 

they choose to participate. 

A survey of the literature, including the CLEF Working Notes papers, shows that 

automated approaches to Answer Validation can be broadly separated into two 
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categories.  The first category can be broadly generalized as machine-learning and lexico-

semantic approaches to the problem of textual entailment.  Textual entailment can be 

thought of as the problem of hypothesis proving.  In other words, textual entailment seeks 

to understand how well a hypothesis is entailed by a segment of supporting text.  For 

example, given the question “What is the capital of the USA?” the problem of validating 

the answer “Washington” is equivalent in the textual entailment paradigm to estimating 

the truthfulness of the hypothesis “The capital of the USA is Washington DC” given a 

segment of supporting text.  Textual entailment methods first generate a hypothesis (often 

using lexical or semantic methods), and then seek to understand the validity of that 

statement given a segment of supporting text.  The majority of the CLEF entries use this 

type of approach.  The second broad category of Answer Validation strategies are 

statistical methods.  To date, only a few groups have effectively applied statistical 

methods to the problem of Answer Validation, although statistical methods have proven 

to be effective and efficient for this task. 

The remainder of this section describes the work that has been done in each of these 

categories of Answer Validation strategies in detail. 

 

2.5.1 Entailment Methods for Answer Validation 

A comprehensive look at the application of textual entailment to Question Answering 

is presented by Harabagiu (S Harabagiu & Hickl, 2006).  Specifically, Harabagiu 

explores three methods by which textual entailment may be incorporated into QA.  In the 

first method, each of a the candidate answers in a ranked list that do not meet the 

minimum conditions for textual entailment are removed from consideration.  Then, the 
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remaining candidate answers are then re-ranked based on the entailment confidence 

assigned by the textual entailment system. Finally, the system outputs a new set of ranked 

answers which do not contain any answers that are not entailed by the user's question and 

the associated supporting text contained within the document collection. 

The second method focuses on using textual entailment to limit the number of 

passages considered during the Answer Extraction process.  (Harabagiu calls Answer 

Processing what we have called Answer Extraction.)  In effect, Harabagiu uses 

entailment as a secondary Candidate Document Selection stage, and proposes that since 

Answer Extraction is often a resource intensive process, textual entailment can be used to 

limit the number of passages that are considered for Answer Extraction. Lists of passages 

retrieved by a the Candidate Document Selection module are re-ranked based on textual 

entailment information; in some cases, the contents of passages may be altered to more 

specifically represent entailment information. Once ranking is complete, Answer 

Extraction takes place only on the set of entailed passages that the system considers likely 

to contain a correct answer to the user's question. 

In the third method, Harabagiu builds on previous work (S. Harabagiu et al., 2005) in 

exploring techniques that can be used to automatically generate well-formed natural 

language questions from the text of paragraphs retrieved by a Candidate Document 

Selection module. In the third method of applying textual entailment to QA, sets of 

automatically-generated questions are created using a stand-alone AutoQUAB textual 

entailment module, which assembles question-answer pairs from the top-ranked passages 

returned in response to a question. Harabagiu expects that if a question q0 logically 

entails another question q1, then some subset of the answers entailed by q1 should also be 
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interpreted as valid answers to q0. By establishing textual entailment relationships 

between a user’s question and the automatically-generated questions derived from 

passages identified by the QA system for that question, Harabagiu proposes that a set of 

answer passages that contain correct answers to the original question can be identified.  If 

no automatically-generated questions were found to be entailed by the original question, 

passages are ranked according to their entailment confidence (following method 2) and 

sent to Answer Extraction built for further processing and validation.  

All of these approaches to entailment is reflected in the COGEX entry to the CLEF 

AVE in 2006 (Tatu, Iles, & Moldovan, 2006), which was one of the most successful 

Answer Validation approaches across languages that year, uniformly outperforming the 

baseline. 

Also in the 2006 CLEF AVE, Rodrigo (Rodrigo, Peñas, & Verdejo, 2006) proposes a 

textual entailment system that only uses information about entities (numeric expressions, 

temporal expressions and named entities) in order to study the importance of entities in 

answer validation. The motivation for this experiment came from the study of the QA 

task in CLEF 2005, where 75% of the questions in Spanish were factoids that had a 

strong focus on entity relationships. For example, the responses to factoid questions 

contain typically contain entities (eg. person names, locations, numbers, dates). For this 

reason, Rodrigo considers that the study of entities is important for the textual entailment 

task, as applied to Answer Validation. In their experiments, Rodrigo uses the hypothesis 

that in the recognition of textual entailment all the elements in the hypothesis must be 

entailed by elements of the text. The proposed system obtained better results than the 

baseline system (which always responds “YES”), achieving an increase of 0.8 in the F-
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measure.  We note the importance of this result, as the methods which are described for 

creating an automatically-generated Question Context Model (QCM) later in this text 

focus on entities as well. 

A number of the CLEF AVE entries use machine learning techniques for the purpose 

of generating textual entailment relationships and scores.  In particular, Kozareva 

(Kozareva, Vázquez, & Montoyo, 2006) uses the already developed machine learning 

based textual entailment system called MLEnt for Answer Validation. The MLEnt system 

consists of word overlap and semantic similarity modules. For the AVE competition, only 

the word overlap module was utilized as the similarity, and it was impossible to adapt it 

to the different language pairs. MLEnt was combined with a simple voting technique to a 

newly developed module for acquiring semantic similarity information through Latent 

Semantic Indexing (LSI) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990).   

In order to apply LSI to the AVE task, a corpus was required which serves as a basis 

for the construction of the conceptual matrix. The Answer Validation Text-Hypothesis 

data provided by the AVE organizers was used for this corpus. The conceptual matrix is 

constructed only with the text-phrases of the AVE corpus.  A study was conducted which 

found that the most effect LSI matrices were created when using the Text parts of the 

Text-Hypothesis data, as opposed to the full corpus provided.  For each one of the 

languages – English, Spanish, Italian, German, Dutch, Portuguese and French, different 

conceptual matrices were constructed using the sentences of the text from the AVE 

corpora. 

From the generated conceptual matrix one can establish the similarities between 

terms, phrases or documents. Used in the manner described, LSI extracts (in effect) the 
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similarity relations between the Text-Hypothesis phrases and the results are a list of Text-

Hypothesis phrases ordered by their similarity score to the question-answer pair being 

evaluated. Under the concept of LSI, an AVE pair is correct when the similarity value is 

close to 1, and less similar when the similarity value is close to 0.  Performance of this 

system uniformly outperformed the baseline across all the languages for which it 

submitted results.  The success of LSI is an important result for our research since we 

employ a Probabilistic Latent Semantic Analysis (PLSA) indexing to the Answer 

Validation problem. 

Another machine learning approach to Answer Validation is proposed by Wang and 

Neumann (Wang & Neumann, 2007, 2008). Their system contains a main approach with 

two backup strategies. The main approach extracts parts of the dependency structures to 

form a new representation, named Tree Skeleton, as the feature space and then applies 

Subsequence Kernels to perform Machine Learning. The backup strategies deal with the 

Text-Hypothesis pairs which cannot be solved by the main approach. One backup 

strategy is called Triple Matcher, as it calculates the overlapping ratio on top of the 

dependency structures in a triple representation; the other is simply a bag-of-words 

method, which calculates the overlapping ratio of words in the Text and the Hypothesis. 

Another machine-learning approach to Answer Validation is presented by Glockner 

(Glöckner, 2006, 2007, 2008).  His system, called RAVE (Real-time Answer Validation 

Engine) is a logic-based answer validation and selection engine which is designed for 

application in real-time question answering. RAVE uses a deep linguistic analysis 

processing chain and a simplified validation model where the logic prover only checks to 

determine if the support passage contains a correct answer at all.  Across the three years 
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of CLEF participation, RAVE moves from a full-up logic-based answer validation system 

to logical validation of supporting snippets.  This permits RAVE to avoid any parsing of 

answers (the system only needs a parse of the question and pre-computed snippet 

analyses) so that very fast validation and selection times can be achieved. Machine 

learning is used for assigning local validation scores using both logic-based and shallow 

features. One of the key features of RAVE is its innovative aggregation model, which is 

robust against duplicated information in the support passages. In this model, the effect of 

aggregation is controlled by the lexical diversity of the support passages for a given 

answer. If the support passages have no terms in common, then the aggregation has 

maximal effect and the passages are treated as providing independent evidence. 

Repetition of a support passage, by contrast, has no effect on the results of aggregation at 

all. RAVE achieved an F-score of 0.39 and a selection rate of 0.61 across all languages 

for which it competed, which outperformed the baseline. 

A final method of applying machine learning to the Answer Validation task is 

explored over two years of the CLEF AVE by Tellez-Vallero (Téllez-Valero, Juárez-

González, Montes-y-Gómez, & Villaseñor-Pineda, 2008; Téllez-Valero, Montes-y-

Gómez, & Villaseñor-Pineda, 2007).  Their method is based on a supervised learning 

approach for recognizing the textual entailment. It mainly uses a set of attributes that 

capture some simple relations among the question, the answer and the given supported 

text. In particular, it considers some novel attributes that characterize the compatibility 

between question and answer types; the redundancy of answers across streams of 

candidate answer providers (eg. if multiple methods of Answer Extraction are employed), 

and the overlap between the question-answer pair and the core fragment of the support 
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text. The objective of this Answer Validation method was to discriminate correct from 

incorrect answers as well as to provide a capacity to combine the answers from several 

Question Answering systems. The evaluation results of the proposed method achieved a 

0.39 F-measure in the detection of correct answers across all the languages in which it 

participated, which outperformed the baseline result of the AVE 2008.  

 

2.5.2 Statistical Methods for Answer Validation 

Early Answer Validation techniques had the goal of filtering out improper candidates 

by checking how adequate a candidate answer is with respect to a given question. These 

approaches relied on discovering semantic relations between the question and the answer. 

For example, Harabagiu (Moldovan & Harabagiu, 2000) considers answer validation to 

be an inference process, where an answer is valid with respect to a question if an 

explanation for it, based on background knowledge from an external semantic resource, 

can be found. 

However, the usage of semantic techniques on open domain QA tasks is problematic.  

Acquisition and assimilation of authoritative semantic resources is expensive both in 

terms of the linguistic resources that are required and in terms of computational 

complexity.  These issues motivate the seminal work in modern automated Answer 

Validation using statistical methods; Magnini (B Magnini, M. Negri, R. Prevete, & H. 

Tanev, 2002b) presents an approach that uses redundant information sources on the Web 

for the purpose of Answer Validation.  Magnini proposes that the number of Web 

documents in which the question and the answer co-occurred can serve as an indicator of 

answer validity.  The approach is based on the intuition that the semantic connections 
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between an answer and a question can be estimated by exploiting the redundancy of Web 

information. “The hypothesis is that the number of documents that can be retrieved from 

the Web in which the question and the answer co-occur can be considered a significant 

clue of the validity of the answer (Magnini, Negri et al., 2002a).” Documents are 

searched in the Web by means of validation patterns, which are derived from a linguistic 

processing of the question and the answer. The advantages of this approach are its 

simplicity and its efficiency.   

 In (Magnini, Negri, Pervete, & Tanev, 2002), Magnini furthers his original work 

by the nature of validation patterns.   The intuition underlying this approach is that, given 

a question-answer pair, it is possible to formulate a set of validation statements whose 

truthfulness is equivalent to the degree of relevance of the answer with respect to the 

question. Magnini reformulates the answer validation task as a problem of statement 

reliability. However, there are two issues that Magnini addresses in order to make the 

approach effective.  First, a validation statement needs to be converted to a richer 

representation format to capture the knowledge that may connect a question to an answer; 

this representation is what Magnini terms a validation pattern. Second, Magnini proposes 

that checking the reliability of a validation pattern can be accomplished by relying on 

statistical counts of terms in redundant information sources. 

Magnini (Magnini, Negri, Pervete et al., 2002) proposes the following four-step 

algorithm: 

1. Compute the set of representative keywords from the question and the answer.  

This step is carried out using linguistic techniques, such as answer type 
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identification (from the question) and named entities recognition (from the 

answer); 

2. From the extracted keywords compute the validation pattern for the question-

answer pair.  This step is also performed using linguistic techniques. 

3. Submit the validation pattern to a publicly available search engine (Magnini used 

Google) 

4. Estimate an Answer Relevance Score considering the results returned by the 

search engine. 

The results of this algorithm yield considerable increases in precision, recall and 

success rate (accuracy) over the baseline results.  The success of Magnini’s work 

(Magnini, Negri, Pervete et al., 2002; Magnini, Negri et al., 2002a) shows the viability of 

the application of statistical methods to Answer Validation.  

A related approach to Answer Validation is proposed by Li (F. Li, Zhang, & Zhu, 

2008). Li also proposes a novel approach based on information retrieval on the Web. 

However, Li reformulates the Answer Validation problem as a pure distance calculation 

from an answer candidate to a question. The hypothesis is that, among all candidates, the 

correct answer has the smallest distance from question. Li employs the conditional 

normalized minimum distance metric, which is based on Kolmogorov Complexity theory 

(M. Li & Vitanyi, 1997), for this task. This distance measures the relevance between 

question and answer candidates conditioned on a surface pattern set. For a distance 

calculation, Li first extracts keywords from the question (called a set of question focus 

terms), and then constructs a hierarchical pattern set of related terms based on documents 

returned from a publicly available search engine.  Li makes used of both the “Google” 
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and “Altavista” search engines.  The information distance calculation is simplified as 

Kolmogrov complexity can be approximated through term frequency counts.  The results 

of their experiments show that the results of this method are stable and robust, and do not 

depend on the specific question, corpus or search engine.  

It should be noted here that we see an opportunity for the application of statistical 

language modeling techniques to Answer Validation by noting the general success of 

statistical methods applied to this problem.  Furthermore, the lack of work done 

specifically in applying statistical methods to Answer Validation makes this an excellent 

candidate area for further research. 
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3. THEORY AND MODELS 

We present the theoretical foundation of our work in four sections. First, we 

describe our preliminary work in Question Answering in the context of our entry to the 

2007 TREC Question Answering Track.  We first discuss the nature of the TREC QA 

task, with specific examples of questions, documents and correctness.  Then, we describe 

our TREC entry.  The issues we encountered specifically relating to the incorporation of 

semantic information into the design of a QA system serve as the motivation for our 

theoretical approach.  Next, we describe our early work that compares the effectiveness 

of language modeling with other IR approaches for QA using a simple evaluation 

methodology.  Finally, we describe our theoretical model, the Aspect-Based Relevance 

Language Model, and the Question Context Model that can be derived from it. 

 

3.1. TREC Question Answering Track 

As discussed in Chapter 2, the goal of the TREC QA track is to foster research on 

systems that retrieve short, concise answers to a question rather than lists of documents. 

The TREC QA task focuses on open-domain data rather than on a particular specialty 

area.  This ensures that domain-dependent resources are not utilized to enhance the 

performance of the QA systems being evaluated, and ensures transferability of QA 

designs and models to the widest variety of application areas.  In this section we describe 

the TREC Question Answering testbed in detail.  This explanation will not only be useful 

as background for our preliminary efforts in Question Answering, but will also serve as 

background material for our later experiments in Candidate Document Selection and 
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Answer Validation.  The TREC QA testbed provides an objective platform on which we 

can evaluate our algorithms against state of the art approaches.  Without the existence of 

such an evaluation platform, it would be impossible to quantify the merits of our 

algorithms against other approaches. 

 

3.1.1 TREC Question Answering Test Questions 

In 2007, the TREC QA challenge required competing systems to correctly answer 

a set of 75 question series.  Each question series asked for information about a particular 

target or topic.  As in TREC 2006, the topics (or targets) included people, organizations, 

events and entities. At a high level, a question series may be considered to be an 

abstraction of a user session with a QA system.  Some questions depend on knowing the 

correct answers to previous questions in the same series.  There are, however, no cross-

references between question series.  For example, the correct answer to a question in a 

later question series cannot depend on the answer provided in an earlier question series.  

A QA system that participates in the challenge can consider each question series 

independently.  The TREC QA Track assumes that the user of the system is an "average" 

adult reader of American newspapers. 

Each question series consists of some factoid and some list questions, and ended 

with exactly one "Other" question.  A factoid question requires the QA system to produce 

a single response, along with a reference to a document in the dataset that supports the 

response.  A list question requires the QA system to produce one or more responses in an 

unordered list, each with a reference to a document in the dataset that supports the 

response.  “Other” questions are somewhat less intuitive; a correct answer in response to 
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an "Other" question is any piece of “interesting” (E. M. Voorhees & D. K. Harman, 

2005) information about the target that is not covered by the preceding questions in the 

series.  One or more human assessors determine correct answers for factoid and list 

questions.  The final set of judgments used in the TREC evaluations are a composite of 

the judgments of individual assessors.  The official scores for the "Other" questions are 

computed using multiple assessors' judgments of the importance of information nuggets.   

It should be noted here that if no answer is found in the document collections, as 

will be the case for some factoid questions, then the correct answer will be "NIL.”  In 

other words, it is important for the QA system to identify those cases for which it cannot 

find an answer.  A question is assumed to have no correct answer in the collection if the 

TREC assessors do not find an answer during the answer verification phase and no 

participating QA system returns a correct response that is supported by a document in the 

corpus. If a participating QA system returns a right answer that is unsupported in the 

document collection, NIL will still be the correct response for that question. 

Time-dependent questions are those for which the correct answer can vary 

depending on the timeframe that is assumed. When a question is phrased in the present 

tense, the implicit timeframe will be the date of the last document in the document 

collection; thus, QA systems are required to return the most up-to-date answer supported 

by the document collection. When the question is phrased in the past tense then either the 

question will explicitly specify the time frame (e.g., "What cruise line attempted to take 

over NCL in December 1999?") or else the time frame will be implicit in the question 

series. For example, if the target is the event "France wins World Cup in soccer" and the 

question is "Who was the coach of the French team?" then the correct answer should be 
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the name of the coach of the French team in 1998 when France won the World Cup.  In 

this case, the name of any past or current coach of the French team is an incorrect 

response.  

The question set is given in an XML format. The format explicitly tags the 

question target as “target”, and each question in the series is specifically marked as 

“FACTOID,” “LIST” or “OTHER.”  Each question will have an identification number of 

the form X.Y where X is the identifier for the target and Y is the sequence number of the 

question in the series. Factoid questions are questions that seek short, fact-based answers.  

List questions are requests for a set of instances of a specified type. Factoid and list 

questions require exact answers to be returned. Responses to the "other" question need 

not be exact, though excessive length will be penalized.  

An example of a TREC question series is shown in Figure 5 below. 
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Figure 5:  Example TREC Question Series for Target = "Alfred Hitchcock" 

 

 

3.1.2 TREC Question Answering Corpus 

In past TREC challenges, all questions had been posed against the Advanced 

Question Answering for Intelligence Project’s AQUAINT and AQUAINT II corpuses. 

AQUAINT and AQUAINT II are both collections of English newswire articles from a 

variety of sources including: Agence France Presse, Central News Agency (Taiwan), 

Xinhua News Agency (China), the Los Angeles Times-Washington Post News Service, 

the New York Times, and The Associated Press.  DTD files distributed along with the 

<target id="153" text="Alfred Hitchcock"> 

<qa> 
  <q id="153.1" type="FACTOID">When was Hitchcock born?</q>  

  </qa> 

<qa> 
  <q id="153.2" type="FACTOID">Where was Hitchcock born?</q>  

  </qa> 

<qa> 
  <q id="153.3" type="FACTOID">What was Hitchcock's first 

movie?</q>  
  </qa> 

 <qa> 
  <q id="153.4" type="LIST">List his movie nominations for best 

director.</q>  
  </qa> 

<qa> 
  <q id="153.5" type="FACTOID">How many Oscar awards did 

Hitchcock win?</q>  
  </qa> 

<qa> 
  <q id="153.6" type="FACTOID">When did Hitchcock die?</q>  

  </qa> 

<qa> 
  <q id="153.7" type="FACTOID">Where did Hitchcock die?</q>  

  </qa> 

<qa> 
  <q id="153.8" type="OTHER">Other</q>  

  </qa> 

</target> 
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datasets describe the specifics of the document formats from each source agency.  Each 

document in the corpus has a unique document identifier that specifies both the source 

newswire service, the date when the article was posted to the newswire service, and a 

unique counter that distinguishes that newswire article from other articles posted on the 

same source newswire service on the same day.  The AQUAINT corpus contains roughly 

1 million documents spanning the years from 1996 – 2000. The AQUAINT II collection 

comprises approximately 2.5 GB of text (about 900,000 documents) spanning the time 

period of October 2004 - March 2006.  An example of a document from the TREC 2006 

corpus is presented in Appendix A. 

In 2007, a new wrinkle was introduced into the Question Answering task when a 

corpus of blog documents (Blog06) was added to the document corpus.  The 2007 TREC 

QA task differed from previous years in that questions were asked over both blog 

documents and as well as newswire articles, rather than just over newswire alone. A blog 

document is defined to be a blog post and its follow-up comments. While newswire is 

typically composed of well-formed sentences that have been through an editorial process, 

documents in the blog collection may contain well-formed or badly-formed English.  

Furthermore, as blogs are typically based on the opinion of an individual, there is no 

guarantee that the information contained within a blog post is valid.  In fact, there is a 

high likelihood of a significant amount of blog postings being either exaggerations of the 

truth or outright spam.  Mining blogs for answers introduces significant new challenges 

in at least two aspects that are very important for functional QA systems:  

• Being able to handle language that is not well-formed and which does not 

adhere to any fixed set of grammatical or linguistic rules 
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• Dealing with discourse structures that are less reliable than newswire. 

The Blog06 corpus is distributed by the University of Glasgow and is the same collection 

as was used in the TREC 2006 Blog Track. Each blog document is a collection of 

permalinks in which the raw HTML content from the Web is wrapped between a <DOC> 

</DOC> pair of XML tags.  There is also some informational metadata tags associated 

with the information contained in each permalink, including a document identification 

number.  The Blog06 collection spans roughly the same dates as the AQUAINT II 

collection, which provides a means for a QA system to perform checks of blogged 

information against newswire.   

It should be noted here that we propose that newswire contains facts and blogs 

contain opinion.  In other words, we largely ignore any biased information that may be 

distributed via traditional news outlets.  The emerging field of sentiment analysis 

(Godbole, Srinivasaiah, & Skiena, 2007) deals specifically with identification of bias 

within documents, but a comprehensive discussion of sentiment analysis within the 

context of Question Answering is beyond the scope of this thesis. 

 Unlike the AQUAINT and AQUAINT II document collections, usage of the 

Blog06 collection required TREC participants to pay an additional fee to the University 

of Glasgow for usage.  While this was not a deterrent for some groups of TREC 

participants, several other groups (including our team from Drexel) were unable to 

acquire the Blog06 data.  As such, some of the aims of the TREC QA organizers may not 

have been fully realized.  Groups who did not have access to Blog06 data competed in 

TREC 2007, but at a disadvantage.  And their algorithms were unable to implement the 
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features that would distinguish a fact-based well-formed source document from an 

opinion-based un-edited source document. 

 

3.1.3 TREC Question Answering Judgments 

A TREC QA submission consists of exactly one response for each question. The 

definition of a response varies for each of the different question types.  In this section we 

describe what constitutes a correct answer for each of the TREC QA question types. 

For factoid questions, a response is a single answer string and document identifier 

pair or the string "NIL." The "NIL" string will be judged correct if there is no answer 

known to exist in the document collection; otherwise it will be judged as incorrect. If an 

answer string and document id pair is given as a response, the answer string must contain 

nothing other than the answer, and the document identifier must correctly reference a 

document in the collection that supports the answer string as an answer. The identifier of 

a Blog06 document is the <DOCNO> element from the XLM file that contains the set of 

permalinks associated with a blog document. The identifier of an AQAUINT and 

AQUAINT II document is the identifier attribute of a <DOC> element, as specified by 

their respective DTD files. The answer string does not have to appear literally in a 

document in order for the document to support it as being the correct answer. Some 

additional axiomatic knowledge and temporal inference processing can be used to 

correctly identify the answer including:  

• Temporal ordering of months and days of the week 

• Calculation of specific dates from relative temporal information provided in a 

document. For example, "July 2007" is a supported correct answer to "When was 
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the final Harry Potter book published?" if it is supported by a document dated 

June 2007, containing the phrase "the final Harry Potter book will be published 

next month..."  

Sometimes, different documents may support contradictory answers as being correct. A 

response is said to be locally correct when the supporting document supports the answer 

string as being correct, and the answer string contains exactly the correct answer. Locally 

correct answers are assumed to be globally correct unless there is a better, contradictory 

answer supported in the document collection. TREC assessors may use a number of 

criteria in determining that one locally correct answer is better than another, including the 

date of the supporting document (more recent is better), the amount of support provided 

by each supporting document, the number of distinct sources that support the answer as 

being correct, and the authoritativeness of the source. The assessor will mark as globally 

correct one or more of the most reliable of the known locally correct answers.  It should 

be noted here that "global" correctness is defined with respect to the document collection, 

and not necessarily with respect to the real world.  

An answer string must contain a complete, exact answer and nothing else. 

Responses will be judged by human assessors who will assign one of five possible 

judgments to a response: 

• Incorrect: the answer-string does not contain a correct answer or the answer is 

not responsive 

• Unsupported: the answer-string contains a correct answer but the document 

returned does not support that answer 
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• Non-exact: the answer-string contains a correct answer and the document 

supports that answer, but the string contains more than just the answer or it is 

missing parts of the answer 

• Locally correct: the answer string consists of exactly a correct answer and that 

answer is supported by the document, but the document collection contains a 

contradictory answer that the TREC assessor believes is better.  

• Globally correct: the answer-string consists of exactly a correct answer, that 

answer is supported by the document, and the document collection does not 

contain a contradictory answer that the assessor believes is better.  

In this context, "not responsive" can be taken to mean imprecise.  For example, if the 

question is asked “How much does a gallon of gas cost?” an answer of “3.00” would be 

taken to be imprecise since units are not specified inside the answer string.  Another 

example of a non responsive answer deals with the difference between famous entities 

and their replicas.  If the question is asked, “Where is the Taj Mahal?” a responsive 

answer would return “Agra, India” while a non-responsive answer would refer to the Taj 

Mahal casino in Atlantic City, New Jersey.  A complete description of responsiveness is 

provided in the TREC-8 Question Answering Track Report (Voorhees, 1999).  It should 

be noted here that a factoid question may have more than one globally correct response in 

the corpus. 

For “LIST” questions, a response is an unordered, non-empty set of answer string 

and document identifier pairs, where each pair is called an instance. The interpretation of 

the pair is the same as for factoid questions, and each pair will be judged in the same way 

as for a factoid question. It should be noted here that this means that if an answer string 
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actually contains multiple answers for the question it will be marked inexact and will thus 

hurt the question's score. In addition to judging the individual instances in a response, the 

assessors will also mark a subset of the instances judged globally correct as being 

distinct. If multiple globally correct instances contain answer strings that are conceptually 

identical, the assessor will mark exactly one arbitrary instance as distinct; in other words, 

a correct answer should only show up once in the list response.  Scores will be computed 

using the number of globally correct, distinct instances in the set.  It should be noted here 

that “NIL” is never a correct answer for a “LIST” question.  

Like “LIST” questions, the response for the "OTHER" question that ends each 

target's question series is also an unordered, non-empty set of answer string and 

document identifier pairs.  However, the interpretation of the pairs differs somewhat from 

a “LIST” or “FACTOID” response. A pair in an "OTHER" response is assumed to 

represent a new interesting fact about the target that has not been divulged by the 

previous questions in the series. Individual answer string and document identifier pairs 

are not be judged for these questions. Instead, the TREC assessors construct a list of 

desirable information nuggets about the target, and count the number of distinct, desirable 

nuggets that occur in the response as a whole. There is no expectation of an exact answer 

to "OTHER" questions, but responses will be penalized for excessive length.  

 Once the TREC assessors have finished the judgment process, the final set of 

judgments for all questions is released to the TREC community.  Individual answers are 

marked with scores that indicate whether they are non-exact, locally correct, or globally 

correct, allowing for some degree of flexibility when the TREC testbed is used in 

experimentation. 
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3.2. TREC 2007 Question Answering Track Entry  

This section describes the first time participation of Drexel University’s 

Intelligent Information Processing group in the TREC Question Answering Track.  Our 

primary goal for TREC 2007 was the development of a Question Answering system 

framework, and to use this framework as a vehicle through which we could understand 

QA challenges and issues.  As a result, our results this year were not significant; our 

primary accomplishment was the establishment of a baseline system, on top of which 

later enhancements can be applied. 

Next, we will describe the components of our preliminary system architecture.  

We will explain each component in a generic sense, as well as their specific 

implementations in our system this year.  Our system architecture is shown in Figure 6 

below. As previously stated, the first stage of our architecture is primarily an Information 

Retrieval (IR) stage.  In this stage, the AQUAINT II documents were pre-processed using 

stop-word removal, stemming, and indexing using tools provided as a part of the 

LEMUR toolkit (http://www.lemurproject.org).  Once the corpus pre-processing was 

completed, we used the Indri (Strohman, Metzler, Turtle, & Croft, 2005) search engine to 

perform document retrieval.  Indri queries were created from the TREC questions and 

targets using Indri’s query-likelihood retrieval method which is based on the Ponte and 

Croft language modeling approach using Dirichlet priors for smoothing (Ponte & Croft, 

1998).  The top documents returned from Indri were then considered to be the set of 

Candidate (answer-bearing) Documents.  These documents were then sent on to the 
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second Question Answering stage for further processing.  We considered Candidate 

Documents sets in sizes of 5, 10 and 25 documents for the three runs submitted this year. 

We reiterate here that due to time and budgetary constraints we utilized only the 

AQUAINT II corpus for our experiments.  No Blog data was included as a part of our 

submission this year, which further contributed to our lack of significant results. 
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Figure 6:  2007 TREC Question Answering Entry System Architecture 

 



92 

The set of Candidate Documents were sent to a Candidate Answer Extraction module.  

Our current implementation of this module made use of the Information Extraction (IE) 

resources provided by the GATE ANNIE Toolkit (Bontcheva, Tablan, Maynard, & 

Cunningham, 2004) (http://gate.ac.uk/ie/annie.html). ANNIE was used to extract all 

entities of type “Person,” “Location,” “Organization,” “Date,” “Currency,” and 

“Percentage” from the Candidate Documents.  These entities, which we considered in a 

generic sense to be the Raw List of Candidate Answers, were stored in an Oracle 

database for further processing. 

We then performed two types of basic processing on the Raw List of Candidate 

Answers.  First, we eliminated duplicates using simple string matching functions 

provided by Oracle.  Then, we grouped the answers by entity type (eg. “Person,” 

“Location,” “Organization”) and ranked the entities according to their frequency of 

occurrence in the set of Candidate Documents.  At this point, we returned to the original 

query to try to understand what type of entity would best answer the question that was 

posed.  We created a simple set of heuristics based on the existence of keywords within 

the query such as “who,” “what,” “when,” “where,” “why,” “how many” and “how 

much.”  Having reviewed the query classification scheme proposed by Lehnert (Lehnert, 

1977), we recognize that this is an area where our approach can use significant 

improvement.  The output of our simple classification scheme was an Answer Type, 

which is represents the entity type that will correctly answer the question. 

Knowing the Answer Type and the set of Candidate Answers allowed us to 

implement a simple matching algorithm.  Our final response to the question was the top 

ranked Candidate Answer of the proper Answer Type.  We then went back to our Raw 
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Answer List to determine the document from which the top-ranked Candidate Answer 

came.  Our final response to the question consisted of the top-ranked Candidate Answer 

and its associated Document Number. 

The above approach was designed primarily with factoid questions in mind. We 

were able to re-use the same approach for list questions.  In the case of list questions, 

however, we selected a set Candidate Answers to be returned as the query response.  We 

selected this set by considering answers which ranked above a fixed frequency threshold.  

Our approach does not currently incorporate a mechanism to respond to “OTHER” 

questions.   

As might be expected, our results this year were not significant.  We submitted 

three runs, using Candidate Document sets of 5, 10 and 25 documents, and achieved 

accuracy results of 0.016, 0.019, and 0.022 for these runs respectively. The accuracy 

results of our system were thus directly influenced by the quantity of data returned by the 

IR stage of our system.  However, our results are far below the accuracy results for state-

of-the-art systems. We recognize this, and focus our efforts on enhancements to specific 

components going forward. 

In conclusion, our primary goal this year was to establish a framework for our 

future work in Question Answering.  We started with a holistic approach to the Question 

Answering process, using the generic Question Answering architecture proposed by 

Hirschman (Hirschman & Gaizauskas, 2002) as a foundation.  From these preliminary 

efforts, we choose to target our work in Question Answering to focus on several key 

areas:  development and management of a Question Answering Context using statistical 

language modeling methods, development of robust algorithms for Answer Validation, 
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and the incorporation of statistically generated semantic information into the Question 

Answering process.  

The TREC Question Answering exercises were unfortunately discontinued after 

2007.  As such, we did not have a forum to further present our experiments.  

 

3.2. Preliminary Studies - Language Modeling Applied to QA   

This section describes our preliminary work in applying language modeling to 

Question Answering.  Our primary goal for these activities was to gage the effectiveness 

of language modeling techniques applied to QA, as compared to other (more traditional) 

IR techniques.  Our preliminary results show that language modeling techniques 

outperform other state-of-the-art IR approaches for the QA paradigm. 

Roberts and Gaizauskas (Roberts & Gaizauskas, 2004) introduce the metrics of 

coverage and redundancy to describe the effectiveness of an IR system with the context 

of the QA task.  Coverage is defined to be “the proportion of the question set for which a 

correct answer can be found within the top n passages retrieved for each question 

(Roberts & Gaizauskas, 2004).”    Mathematically, for a question set Q, we can define the 

coverage to be: 

||

|0|}{|
),,(cov

,,,

Q

ARQq
nDQerage

qDnqD ≠∩∈
=  (25) 

where R is the set of n top ranked documents contained in a document collection D and A 

is the subset of those documents that contain the correct answers for each question q 

within the question set.  Put another way, coverage is the maximum likelihood that the 

second stage of the QA system has of answering the question correctly, given the 

documents that are returned by the IR stage.  Redundancy “gives the average number, per 
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question, of passages within the top ranks retrieved which contain a correct answer.”  

(Roberts & Gaizauskas, 2004)  Mathematically, for a question set Q, we can define the 

redundancy to be: 
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where R, D and A have the same definitions as above.  Intuitively, redundancy quantifies 

the number of times the correct answer appears in the documents returned by the IR 

engine.  IR systems with a higher redundancy score affords a QA system more 

opportunities of capturing the correct answer in the second stage of processing. 

Our preliminary experiments in applying language modeling techniques to QA 

were conducted using a subset of the TREC 2005 and TREC 2006 QA Track questions.  

We manually reviewed each question in the TREC 2005 and TREC 2006 question sets to 

extract only those questions that returned a person’s name as the correct answer; we call 

this category of questions “who”-type for obvious reasons. This culling was performed to 

streamline the evaluation process. The answer for a question that returns a person’s 

proper name is relatively straight-forward; answers to other types of questions such as 

those which require a date or numeric type response are more difficult to evaluate given 

our limited subject matter expertise and resources. Once the culling process was 

concluded, a final set of 101 “who”-type questions was developed for this experiment, 

spanning a variety of topic types.  These 101 questions include all “who”-type questions 

present in the TREC 2005 and TREC 2006 question sets. 

Our question set was processed against the AQUAINT corpus, which was used in 

QA tracks of both TREC 2005 and TREC 2006.  The AQUAINT documents were pre-

processed using stop-word removal, stemming, and indexing.  Once the corpus pre-
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processing was complete, queries were constructed for the various IR strategies used in 

this experiment and an IR engine was invoked to produce the set of candidate documents.  

We considered candidate document sets ranging in size from 1, 5, 10, 25, 50 and 100 

documents.  The various IR strategies employed will be discussed in greater detail later 

on in this section. 

The set of documents produced by the IR engine were sent to the GATE ANNIE 

(Bontcheva et al., 2004) for Information Extraction (IE) (http://gate.ac.uk/ie/annie.html).  

ANNIE was used to extract all entities of “Person” type from the candidate documents.  

These entities were stored within an Oracle database for evaluation.  Judgments in 

Questions Answering (QA) tracks of TREC 2005 and TREC 2006 were used to evaluate 

the extracted entities for correctness.  All names that were judged correct by the TREC 

evaluators were considered to be correct; it should be noted that we did not consider 

portions of names to be correct if they were not explicitly judged correct.  So, for 

example, the correct responses to the question “Who was Carolyn Bessette Kennedy 

married to?” were limited to only those variants of John F. Kennedy Jr. judged correct by 

the evaluators. 

Figure 7 below depicts the overall process of our experimentation methodology. 
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Figure 7:  Experimentation Methodology for Preliminary Experiments Applying 

Query-Likelihood Models to Question Answering 

 

Our experiments were conducted using three well-established IR approaches: (1) the 

query likelihood language model-based approach, (2) Okapi BM25 and (3) the traditional 

Tf-Idf.  We used the Indri “#combine” operator to invoke query likelihood retrieval; the 

default Indri settings were used for our experiments including the Dirichlet prior 

smoothing methodology (C. Zhai & Lafferty, 2004). 

We utilized the LEMUR implementations of Okapi and Tf-Idf.  For both these 

approaches, we created a custom stop-word list including words such as “who”, “which” 

and “name” that frequently appeared within question text.   The ParseToFile utility was 

used to construct queries based on the question text and the stop-word list; we also 

employed Porter stemming during query construction.  Both Okapi BM25 and Tf-Idf 

were run using the default LEMUR parameters. Indri (Strohman, Metzler, Turtle, & 

Croft, 2004) was used for the query likelihood language model-based approach in our 

experiment. 
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The coverage and redundancy formulae presented earlier in this section consider 

passage level retrieval.  That is, these metrics describe the top n passages retrieved. In our 

experiment, we consider a single document in its entirety as a passage, and we did not 

break down the document into its constituent passages.  This was done for several 

reasons:  (1) there are numerous methods of breaking down a document into its 

constituent passages, (2) different IR approaches favor one approach over another, and 

(3) the interpretation of a “passage” may be different for the various IR algorithms 

employed in this study.  

The coverage and redundancy results for Indri query-likelihood document level 

retrieval, Okapi BM25 and Tf-Idf are presented in Figure 8 and Figure 9 below. The 

Okapi results are relatively consistent with those presented by Roberts and Gaizauskas 

(Roberts & Gaizauskas, 2004), although we used different question sets and evaluation 

techniques.  For example, using Okapi we show a coverage percentage of 60% after 

retrieving 10 documents, 73% after retrieving 50, and 81% after retrieving 100 

documents. By way of comparison, Roberts and Gaizauskas report coverage percentages 

of 60%, 74% and 79% after retrieving 10, 50 and 100 documents respectively.  This close 

correlation in results indicates a close correlation between our study and theirs. There is, 

however, a variation in redundancy between our results and those reported by Roberts 

and Gaizauskas; this is likely due to differences in questions and document collections. 
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Figure 8:  Candidate Document Coverage Results for Initial Experiments with the 

Query Likelihood Language Model and Question Answering.  Baseline approaches 

include a) Okapi BM25 and b) tf-dif.  

 

 

Figure 9:  Candidate Document Redundancy Results for Initial Experiments with 

the Query Likelihood Language Model and Question Answering.  Baseline 

approaches include a) Okapi BM25 and b) tf-dif. 
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As can be seen, the query likelihood language model outperforms both the Okapi BM25 

and Tf-Idf approaches in terms of both coverage and redundancy.  Using the query 

likelihood language model measure we achieve coverage of 97% after retrieving 100 

documents.  This is a significant result as it shows that IR engines utilizing a query 

likelihood language model approach are likely to return documents containing a correct 

response 97% of the time for “who”-type questions. We can improve the performance of 

the second stage of our QA system by using this result to set the number of candidate 

documents processed, as well as to determine the method by which those documents are 

retrieved.  

The redundancy measurement of the query likelihood language model approach is 

also significant.  From the data above, we can see that (on average) the query-likelihood 

model is two times as likely to have redundant information as Tf-Idf, and five times as 

likely to have redundant information as Okapi BM25. That is, utilizing a query likelihood 

language model approach in the first stage will give the second stage of our QA system a 

higher number of opportunities (on average) to find the correct answer within the set of 

retrieved documents.  

It is interesting to note that while Okapi BM25 had higher coverage than Tf-Idf, 

Tf-Idf shows higher redundancy.  This is true because the Tf-Idf algorithm favors longer 

documents; in other words, although it is more likely that the right answers will appear in 

the document set returned by Okapi, Tf-idf is more likely to return multiple occurrences 

for those correct answers that it does report.  QA systems may find this characteristic 

helpful in certain situations.  
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In conclusion, our preliminary results show that the utilization of a language 

model-based IR strategy in the first stage of a QA system has significant advantages.  The 

coverage and redundancy measures we report indicate that the top 100 documents 

returned using the query likelihood language model approach are likely to contain the 

correct answer 97% of the time, and will have higher occurrences of that correct answer.  

These results have impact not only on the design of the first stage of our QA architecture, 

but will also have design implications on the answer extraction processes in the second 

stage.  

In (Spärck Jones, 2004) Karen Sparck-Jones is skeptical about the application of 

the language modeling to the question answering paradigm.  She questions the 

appropriateness of a generative model when considering the problem of question 

answering; in the language modeling framework, the question and the answer would need 

to be composed from the same underlying model – which does not necessarily make 

intuitive sense.  The goal of this section has been to explore the application of language 

modeling to the IR stage of QA, and for the remainder of this thesis we consider language 

modeling as a broader QA strategy. In this section, we reveal that the language model 

approach outperforms other approaches in the first stage of a QA system. In the 

remainder of this thesis, we continue the application of language modeling to other parts 

of the QA architecture. 

 

3.3 The Aspect-Based Relevance Language Model 

 This section describes our core theoretical model, the Aspect-Based Relevance 

Language Model.  We first return to the Aspect Model from Probabilistic Latent 
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Semantic Analysis (PLSA) and Relevance-Based Language Models as background.  

Although both of these language modeling approaches were discussed in our literature 

review, we feel that a more in-depth discussion is appropriate here.  We next use formal 

methods to derive the Aspect-Based Relevance Language Model, and describe 

qualitatively how this model can be used to create a Question Context Model. 

 

3.3.1 The Aspect Model 

The Aspect Model forms the foundation of the Probabilistic Latent Semantic Analysis 

(PLSA)  method proposed by (Hofmann, 1999). The underlying premise of the Aspect 

Model is that we can define words and documents in terms of “aspects” which are 

associated with a latent class variable.  The Aspect Model is based on two underlying 

assumptions: 

• Words and documents are independent of one another (bag of words 

assumption) 

• Documents and words are both conditioned on a latent aspect (z) which may 

be thought of as a concept 

The Aspect Model has several features that make it intuitively appealing for our research.  

First, by conditioning words and documents on a latent variable, the zero-frequency 

problem is addressed.  Secondly, a priori knowledge is not required about the concepts 

within the corpus for the algorithm to work effectively.  And finally, the usage of 

probabilistic methods defines a generative model of the data which is better able to 

address common text processing issues such as synonymy and polysemy. At a high level, 

the Aspect Model uses the following approach: 
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• Select a document d with probability P(d) 

• Pick a latent class z with probability P(z|d) 

• Generate a word with probability P(w|z) 

• Formulate the probability of observing a pair (d,w), while the latent variable z 

is discarded.  

PLSA is described mathematically by Equation (22) and depicted graphically in Figure 4. 

PLSA is based on maximizing the log-likelihood of the divergence between the empirical 

distribution of observed word-document pairs and the probabilistic model P(w,d).  PLSA 

uses the Expectation-Maximization (Dempster et al., 1977) algorithm to estimate the 

probabilities P(z), P(w|z) and P(d|z) for latent variable models.   In the remainder of this 

section, we explore the steps of the PLSA algorithm in detail to get a better understanding 

of how the z categories are specifically determined:  

1. PLSA Initialization 

a. The number of documents N is initialized to the total number of 

documents in the corpus 

b. The number of words n is initialized to the total number of unique terms in 

the corpus 

c. The best test LogLikelihood value is initialized to negative infinity 

d. Three p(z) arrays are each initialized to 0 for all z values.  One array 

represents the p(z) calculated by current algorithm iteration, one array 

represents the p(z) calculated by the previous algorithm iteration, and the 

last are the p(z) values from the best (highest LogLikelihood) iteration. 
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e. Three p(w|z) matrixes are initialized to 0 for all w and all z. One matrix 

represents the p(w|z) calculated by current algorithm iteration, one matrix 

represents the p(w|z) calculated by the previous algorithm iteration, and 

the last are the p(w|z) values from the best (highest LogLikelihood) 

iteration. 

f. Three p(d|z) matrixes are initialized to 0 for all d and all z. One matrix 

represents the p(d|z) calculated by current algorithm iteration, one matrix 

represents the p(d|z) calculated by the previous algorithm iteration, and the 

last are the p(d|z) values from the best (highest LogLikelihood) iteration. 

2. Next, initialize the inverted matrix that maps words (unique terms) to the 

documents in which they occur 

3. The document corpus is randomly divided into a training and test set.  The test set 

is randomly set to be a percentage of the documents (as specified by input 

parameters – default is 10%).  The remainder of the documents is considered to be 

the training set. 

4. For each iteration of the algorithm: 

a. One of the inputs to the algorithm is the maximum number of Expectation-

Maximization iterations that should be performed. 

b. This number is set as the upper bound on the number of times the 

algorithm iterates.  If the algorithm converges before it reaches this 

maximum number, it stops. 

c. The algorithm computes LogLikelihood measures for p(z), p(d|z) and 

p(w|z) 
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d. The first iteration of the algorithm is highly influenced by the term 

frequency weights  

i. So, tf(w) and tf(w,d) heavily influence p(w|z) and p(d|z) 

respectively for all z 

e. As the algorithm progresses, the following E-step and M-step calculations 

are performed alternately until the algorithm converges : 

∑
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Here, n(d,w) denotes the term frequency or the number of times that the 

word n occurred in the document d.  The values P(z), P(d|z) and P(w|z) 

which are calculated in the M-steps and then used to calculate the next 

variation of the E-step.  Then, the value of P(z|d,w) calculated in the E-

step is then used in the M-step calculations.  The variables w', d' and z' are 

summation variables that are used for the purposes of distinguishing the 

contents of the summation from the conditioned variables w, d and z. 

 

We present this in-depth description of the PLSA algorithm so that the reader can 

appreciate the mechanics of how conditional probabilities are assigned to latent aspects, 
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words and documents.  In practice, a variation of the PLSA algorithm, which incorporates 

a Tempered Annealing technique called Tempered Expectation Maximization (TEM) 

(Hofmann, 1999) is used to modify the M-step to make it more generally applicable 

across corpus types.  TEM introduces a control parameter called β, which modifies only 

the M-step of the algorithm. 

 

 

3.3.2 Relevance-Based Language Models 

 One of the main obstacles to effective performance of the classical probabilistic 

IR models has been precisely the challenge of modeling relevance. However, estimating 

relevance in a typical retrieval environment is difficult because of the lack of training 

data.  In a typical retrieval environment, we are given a query and a large collection of 

documents without any indication of which documents might be relevant. These 

conditions are further exacerbated by a Web-search environment where the number of 

documents and their contents are changing in real-time.  Faced with the absence of 

training data, researchers have used heuristic estimates for relevance, leading to models 

that are difficult to interpret. Lavrenko (Lavrenko & Croft, 2001) notes that estimating 

the likelihood of non-relevance is easier that estimating the likelihood of relevance, since 

we have plenty of training data.  For a typical query, almost every document in the 

collection is non-relevant if the collection is assumed to be large. 

 The famous probability ranking principle, advocated by Robertson in (S. E. 

Robertson, 1997), asserts that optimal performance is achieved by an IR system only if 

the documents are ranked by the posterior probability that they belong to the relevant set 

of documents. Robertson (S. E. Robertson, 1997) also shows that it is equivalent to rank 
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the documents by the likelihood of being observed in the relevant class divided by the 

likelihood of being observed in a non-relevant class.  Lavrenko (Lavrenko & Croft, 2001) 

makes the common assumption that a document is composed of a “bag-of-words” each of 

which is independent of each other to arrive at the following equation: 
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Here, P(D|R) is the likelihood that a document D is relevant to an information need and 

P(D|N) is the likelihood that a document D is not relevant to an information need.  

Similarly, P(w|R) is the likelihood that a word w contained in D is relevant to an 

information need and P(w|N) is the likelihood that a word w contained in D is not 

relevant to an information need.    

If we had available training data in the form of relevance judgments, estimating  

 P(w|R) could be as simple as counting the number of occurrences of w in the relevant 

documents and then appropriately smoothing the term counts. However, in a typical 

retrieval setting we are given only a large collection of documents and a user query, and 

we do not know which documents comprise the relevant set.  However, Lavrenko 

proposes that we do know that all the relevant documents are somehow related to the 

information need. Lavrenko assumes that for every information need (or user query) Q, 

there exists an underlying relevance model R, which assigns the probabilities P(w|R) to 

the word occurrence in the relevant documents.  The relevance model also assigns 

probabilities P(Q|R) to the various queries that might be issued by the user for that 

specific information need.  A conceptual representation of the Relevance-Based 
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Language Model is shown in   

Figure 10. 

 

  

Figure 10:  Conceptual Representation of the Relevance-Based Language Model 

 

  Lavrenko proposes that the query Q is also a sample from R; however, the 

sampling process that generates the terms in Q does not have to be the same as the 

process that generates the words in the relevant documents. In other words, the 

probability of a one-word query “w” given a relevance model R need not be the same as 

the probability of observing the same word w in a random relevant document, given the 

same relevance model R.  Lavrenko does not assume that the query is a sample from any 

specific document model, as was the case with past language modeling approaches based 

on a query-likelihood assumption.  Instead the Relevance-Based Language Model 

assumes that both the query and the documents are samples from an unknown relevance 

model; known information about the queries and pseudo-relevance feedback information 

from documents can then be used to approximate the relevance model. 
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 To this end, Lavrenko proposes the following scenario which we leverage for the 

design of the Aspect-Based Relevance Language Model.  Suppose that we have a black 

box from which we can repeatedly sample words.  After sampling m times, we observe 

the words q1, …, qm coming out of the black box.  We can then relate the probability that 

w will be the next word coming out of the black box to the conditional probabilities of 

the words q1, …, qm that we have already observed.  In other words: 

)q,....q|()|( m1wPRwP ≈   (32) 

Two methods of estimating the probability P(w| q1, …, qm) are described in 

(Lavrenko & Croft, 2001).  Both methods assume the existence of a set U of underlying 

source distributions from which w and q1,…,qm could have been sampled. They differ in 

their independence assumptions. Method 1 assumes that all query words and the words in 

relevant documents are sampled from the same distribution.  Method 2 assumes that the 

query words q1,…,qm are independent of each other but are dependent on w.  

 

3.3.3 Motivation for the Aspect-Based Relevance Language Model 

One of the fundamental problems associated with natural language Question 

Answering is the general sparseness of the queries presented by a user.  For example, the 

question “What position does Warren Moon play?” from the TREC 2006 Question 

Answering Track (Voorhees, 2005a) requires a fair amount of background information 

before it can be correctly “understood” by either a person or a system.  To correctly 

answer the question, one must realize that Warren Moon is a person, and that he plays 

football, and that in football players are assigned regular positions.  In other words, there 



110 

is a context associated with this query that plays a critical role in our understanding of the 

question and our understanding of what entails a reasonable answer.   

We propose that the Aspect Model can be used to supplement the sparse 

information of a query with information from concepts related to query terms within the 

corpus.  So, in the example above, the terms “position,” “play,” and “Warren Moon” 

would be the terms in the query that should be relatable to concepts within the corpus.  

We can review the latent concepts for which “position,” “play” and “Warren Moon” rank 

most highly, and then choose to incorporate words associated with those concepts into 

our corpus. 

The problem, however, with this approach is that we have no way of 

understanding what concepts are most relevant to this particular query.  In our example 

above, the word “position” may occur in multiple concepts, each with a meaning that 

may be fundamentally un-related to our particular situation.  The same also applies to the 

term “Warren Moon,” which might occur in the context of accepting an award, engaging 

in disputes over salary, etc.  In other words, we need to be able to determine which 

concepts are most relevant to this particular issuance of the query.  

 

3.3.4  The Aspect-Based Relevance Language Model 

We base our approach on the same set of assumptions that guide the Relevance-

based Language Modeling approach.  We assume that for every information need (or 

question) there exists an underlying relevance model R.  In the Relevance-based 

Language Modeling paradigm, R assigns probabilities P(w|R), which are the word 

occurrences in the relevant documents for the information need.  In practice, since we do 
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not know which documents are relevant to an information need R is unknown and P(w|R) 

is unknown. 

In our model, we assume that R is assigned probabilities P(z|R) where z is a latent 

aspect of an information need, as defined by the Aspect Model.  Thus, the relevance to an 

information need is described not in terms of words, but in terms of the latent aspects or 

concepts associated with the information need.  Conceptually, this alternative 

representation of the information need includes context information via the inclusion of 

aspects that extends beyond knowledge related to the specific words themselves. 

However, in this case, as with the Relevance-based Language Model, R and 

P(z|R) are unknown.  However, the query, which is composed of terms q1,…,qN is known. 

(Lavrenko & Croft, 2001) assumes that we can approximate a relevance model R, by 

viewing the query terms q1,…,qN  are a random sampling of words from R. Using the 

same assumption, we can approximate: 

),...,|()|( 1 NqqzPRzP ≈   (33) 

Thus, we can view the probability of a latent concept existing within R as being 

approximated by the probability of the existence of that concept given that the words that 

we have sampled from the relevance model so far. 

Using Bayes Rule, we arrive at the following equation: 
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Since P(q1,…,qN) will be the same for all z we can effectively disregard this for ranking 

purposes.  This gives us the following equation: 

∏≅≈
i

iN zqPzPqqzPRzP )|()(),...,|()|( 1   (36) 

The PLSA algorithm provides the methodology for the calculation of P(z) and P(qi|z).  

Once we complete the Expectation-Maximization computation, we will have arrived at a 

distribution of concepts which are relevant to the user’s information need.   

If we use P(z|R) and P(w|z) as ranking mechanisms, we can arrive at a Question 

Context Model that includes only the most relevant aspects for an information need, and 

only the words that are most closely related to those aspects.  We thus propose that the 

Aspect-Based Relevance Language Model can serve as the basis for a Question Context 

model.  We discuss in detail the Question Contextualization process in the following 

chapter, including our efforts to understand the parameters that govern Question 

Contextualization. 

 

3.3.5 Early Qualitative Results 

At this stage, we feel that some of the interesting qualitative results that we have 

observed in early experiments with the Question Context Model merit some discussion. 

From inspection, we found that when we ranked words by their P(z|R) and P(w|z) values, 

the words added to the base questions did, in fact, enhance our understanding of topics 

and the specific aspect of the topic to which the question related.   For example, when the 

question “What does LPGA stand for?” is processed, the first two words included in the 

question context are “golf tour.”  If one is unfamiliar with the LPGA, these words added 

to the context of the query assist in providing some descriptive text that might help a 
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human or system “understand” the topic of the question.  It is important to note that these 

semantic associations were made using only statistical information contained within the 

corpus, without the explicit usage of ontological information, making our methodology 

transferrable across languages and domains. 

Another interesting qualitative observation comes from reviewing the words that are 

added to the Question Context as we include aspects with lower relevance values.  In 

response to the question “Where was Wolfgang Amadeus Mozart born?” the words 

“music,” “symphony,” “opera,” “Austria” and “Vienna” are first added to the question 

context.  However, as we increase the window of aspects incorporated into the Question 

Context, the words “children,” “brain,” “effect,” and “research” are also included.  There 

are clearly two different aspects of Mozart’s music that are being represented when these 

two sets of words are considered.  The first set of terms is related to Mozart’s music and 

as his work as a composer; the second set describes the relationship that researchers 

believe exists between Mozart’s music and early brain development in children.  While 

both are valid aspects to associate with Mozart, only one is relevant to the particular 

question being asked. 

A final observation is that in some cases, the answer to the question itself sometimes 

appeared as a part of the Question Context.  For example, in response to the question 

“Who was the leader deposed by the overthrow of the Pakistani government in 1999?” 

the word “Sharif” was added to the Question Context.  In the general case answers to 

questions are not included in the Question Context. 

Some example Question Contexts from this early work in Question Contextualization 

is shown in Figure 11. 
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Figure 11:  Example Question Contexts from Early Question Contextualization 

Experiments with the Aspect-Based Relevance Language Model 

 

In conclusion, we have presented a novel theoretical model called the Aspect-Based 

Relevance Language Model that can be incorporated into the design of a Question 

Context model for QA.  Our approach is motivated by the fact that questions are typically 

very sparse, and that the addition of semantic contextual information is required to better 

“understand” the question being asked. We base our theoretical approach on the PLSA 

Aspect Model and Relevance-Based Language Models. Our use of statistical techniques 

in the absence of any domain-specific resources makes our model portable across 

domains and languages, which is critical for its broad applicability. 

topic: lpga 

question: what does lpga stand for? 

query context: golf tour two open round year first 
last us 
 
topic: pakistani government overthrown in 1999 
question: who was the leader deposed by the overthrow? 
query context: afghanistan taliban two indian foreign 
minister sharif united military government bhutto  
 
topic: wolfgang amadeus mozart 
question: where was mozart born? 
query context: works piano hall first opera austria 
vienna music symphony children brain mozart effect 
parents research music orchestra symphony minister eu 
foreign Austrian salzburg festival european 
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4. CANDIDATE DOCUMENT SELECTION 

This chapter describes our experiments and results as we apply the Aspect-Based 

Relevance Language Model to Candidate Document Selection.  To this end, we first 

describe our experiments with the Question Contextualization process, which is an 

integral part of our experimentation methodology.  The output of the Question 

Contextualization process is our Question Context Model.  We then describe two separate 

approaches to incorporating this Question Context Model into Candidate Document 

Selection.  For each approach, we discuss the foundational algorithms, the experiment 

methodology and the empirical results. 

 

4.1. Question Contextualization 

 The primary contribution of the Aspect-Based Relevance Model is that it provides 

us a mechanism to rank aspects according to their likelihood of probability to a specific 

information need.  PLSA provides us a mechanism to quantify the likelihood of a 

particular word, given an aspect.  Considering these two probabilities in tandem provides 

us a powerful mechanism for generating a Question Context Model; that is, to generate a 

set of sense-disambiguated terms that can be considered to provide a context for the 

user’s information need, given the background information provided by the corpus. 
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 Figure 12:  Graphical Representation of the Outcome of the Aspect-Based 

Relevance Language Model 

 

Recall from Section 2.1 that the effectiveness of a language model can be 

assessed by the perplexity metric which is defined in Equation (1).  Perplexity is an 

entropy measure; conceptually, perplexity may be thought of as a measure of how 

“confused” (Jurafsky & Martin, 2000) a language model is.  For example, a perplexity of 

100 indicates that the language model has to choose uniformly between 100 choices for 

the next word, given a sequence of proceeding words.   As such, the lower the perplexity, 

the better the language model.   

In our experiments with Question Contextualization, our goal was to construct a 

language model which included the top-N aspects with the highest likelihood of 

relevance and the top-K most likely words associated with those aspects.  In other words, 

our goal was to understand how we can put thresholds on both P(w|z) and P(z|R) so that 

the resulting language model had the lowest perplexities.  Our first step in this process is 

to understand how to construct the PLSA Model so that the resulting aspects had minimal 

perplexities.   
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The PLSA algorithm is sensitive to both the size and nature of the corpus, as well 

as the number of aspects (categories) that should be included in the resulting model.  The 

corpus and the number of z-categories are both inputs to the PLSA algorithm.  In our 

experiments we discovered that, like most matrix-based algorithms, PLSA is effectively 

only able to process relatively small corpuses, given the amount of computing hardware 

we had available.  For example, the Lemur (Ogilvie & Callan, 2001) implementation of 

PLSA which we used in our experiments was able to handle a maximum corpus of 3000 

documents, which is much, much smaller than the full AQUAINT corpus.  Furthermore, 

breaking the full corpus into thousands of aspects may not be useful; since so many 

concepts and words co-exist with each other, some of the co-occurrence relationships 

may get muddied if too diverse a document set is used by the algorithm. 

To verify this, we conducted an experiment that constructed corpuses of the top-N 

documents associated with each Question Series target in the TREC 2006 question set, 

using the Indri (Strohman et al., 2004) search engine for the IR functionality required.  

We then ran PLSA using a varying number of z-categories, and calculated perplexities 

for each run.  Our results are presented in Table 2.  

Table 2:  Perplexity of PLSA Language Models Constructed with Varying Corpus 

Sizes and Z-Categories 

 Number of Z-Categories 

Corpus Size 5 10 20 50 100 

5 800 732 623 598 601 

10 724 693 642 476 583 

30 643 598 512 396 421 

50 655 552 401 343 498 

100 721 677 543 521 502 

500 843 827 815 795 683 

1000 948 930 901 896 728 
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 Number of Z-Categories 

Corpus Size 5 10 20 50 100 

2000 1076 986 923 912 878 

3000 1120 1003 956 942 931 

 

These results indicate that the PLSA Model performs best when the number of 

documents in the corpus is in small, and when the number of z-categories is roughly 

similar to the number of documents in the corpus.  Specifically, we found empirically that 

corpus sizes of 30 – 50 documents, with 50 or 100 Z-Categories had the best perplexity 

measures.   

However, the resulting perplexities are still very high.  Experiments in Answer 

Validation performed by Rodrigo (Rodrigo et al., 2006) indicate that for factoid Question 

Answering applications, it is most important to consider those words that are associated 

with entities.  Following that example, we examine the effects of limiting the PLSA 

language model to include entities alone.  We used the LingPipe (http://alias-

i.com/lingpipe/) Part of Speech tagger to tag the common and proper nouns in each 

corpus associated with a TREC Question Series target.  We then constructed a pseudo-

corpus that was composed of documents containing only common and proper nouns.  The 

perplexities associated with running PLSA on the resulting documents are presented in 

Error! Not a valid bookmark self-reference.. 

Table 3:  Perplexity of PLSA Language Models Constructed with Varying Corpus 

Sizes and Z-Categories After Part-of-Speech Tagging 

 Number of Z-Categories 

Corpus Size 5 10 20 50 100 

5 772 705 598 574 576 

10 697 667 617 454 559 
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 Number of Z-Categories 

Corpus Size 5 10 20 50 100 

30 618 574 489 376 400 

50 629 529 381 324 476 

100 694 651 520 498 480 

500 814 798 786 767 657 

1000 917 900 871 866 701 

2000 1043 955 893 882 848 

3000 1087 971 925 911 900 

 

These results indicate that the PLSA Model performs better after part-of-speech 

tagging is performed, and only nouns (common and proper) are included in the 

documents that are indexed.  Again, we see empirically that corpus sizes of 30 – 50 

documents, with 50 or 100 Z-Categories had the best perplexity measures. 

Now that we have established a set of optimal parameters for the PLSA Aspect 

Model which is required to calculate the Aspect-Based Relevance Language Model, we 

turn to the task of determining how to threshold the P(z|R) values so that only the aspects 

with the highest likelihood of relevance are included in the Question Context.  To this 

end, we use an approach that is sensitive to the query drift (Mitra et al., 1998).  Query 

drift is likely to occur if too many aspects and too many context terms from those aspects 

are included in the Question Context Model.  Based on our earlier experiments, we first 

fix the corpus size to 50 documents per TREC Question Series target, and the number of 

Z-Categories is also fixed to 50.  We then examine the effects on precision and recall as 

the top-N aspects (based on the ranking provided by the Aspect-Based Relevance 

Language Model) are added to the query and the expanded query is sent to the IR engine.  

The purpose of this experiment was to determine the range of aspects should be 



120 

considered in future experimentation.  The results of these experiments are shown in 

Table 4 and Table 5. 

Table 4:  Precision of TREC 2006 Factoid Questions After Top-N Aspects from the 

Aspect-Based Relevance Language Model are added to the Raw Query 

Number of 

Documents 

Returned 

Raw Query Raw Query 

+ Top 

Aspect 

Raw Query 

+ Top 5 

Aspects 

Raw Query 

+ Top 10 

Aspects 

Raw Query 

+ Top 20 

Aspects 

1 0.56 0.61 0.60 0.53 0.50 

5 0.07 0.12 0.11 0.04 0.01 
10 0.01 0.06 0.05 0.02 0.05 
20 0.00 0.00 0.00 0.00 0.00 
50 0.00 0.00 0.00 0.00 0.00 
100 0.00 0.00 0.00 0.00 0.00 

 

 

Table 5:  Recall of TREC 2006 Factoid Questions After Top-N Aspects from the 

Aspect-Based Relevance Language Model are added to the Raw Query 

 

Number of 

Documents 

Returned 

Raw Query Raw Query 

+ Top 

Aspect 

Raw Query 

+ Top 5 

Aspects 

Raw Query 

+ Top 10 

Aspects 

Raw Query 

+ Top 20 

Aspects 

1 0.00 0.00 0.00 0.00 0.00 

5 0.11 0.13 0.12 0.10 0.09 

10 0.25 0.29 0.26 0.25 0.24 

20 0.32 0.44 0.35 0.31 0.31 

50 0.49 0.63 0.50 0.41 0.44 

100 0.56 0.72 0.57 0.54 0.54 

 

These initial experiments indicate that both precision and recall benefit when the 

Top-1 and Top-5 aspects are added to the raw query.  After that point, however, query 

performance degrades as additional aspects are added.  As such, for the remainder of our 

experiments we will consider including only the Top-1 and Top-5 aspects to the query.  

As a heuristic, we will consider only the top 20 words from each aspect. 

 

4.2. Context-Based Mixture Model 
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Our first approach to incorporating the Question Context Model into the 

Candidate Document Selection process is the Context-Based Mixture Model.  In the 

following sections, we first discuss our theory and approach, then introduce our 

experiment methodology and finally discuss our experimental results. 

 

4.2.1 Theory and Approach 

To incorporate the Question Context Model into an IR framework, we view the 

query as mixture of two parts:  a “seen” part which consists of words directly written by 

the user and an “unseen” part which consists of Context Terms (CTs) which are the 

words that are part of the query’s context.  Thus, we can represent the query-likelihood 

model by the following equation: 

)|()|()|( dqPdqPdqP unseenseen γ+=   (37) 

If γ was set to 1, we would have the case of simple query expansion, in which case the 

CTs would be directly added to the query without any weighting.  qunseen includes α(t) 

which represents a probabilistic weighting scheme for the Context Terms t that are being 

added to the query.   Using the Aspect-Based Relevance Language Model, we can set: 
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Here, t represents a Context Term (CT) and topN represents the top-ranked aspects that 

are included in the query.  In other words, our confidence that a Context Term t is 

relevant to a query is determined by how related that term is to a given concept, and how 

relevant that concept is to a given query.  If we use a mixture model approach to generate 
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the query-likelihood models for p(w|d), we arrive at the following formulae for the seen 

and unseen parts of the query: 

)()1()|()|( wpdwpdqP coll

qseenw

mleseen ∑
∈

−+= λλ  (39)  

)]()1()|()[()|( tpdtptdqP coll

qCTt

mleunseen ∑
∈

−+= λλα  (40) 

Here, pmle and pcoll are the observed word frequency values in the document and 

collection respectively, and λ is the mixture model parameter. w represents a word that 

appears in the given question (or query), t represents a Context Term, and qCT represents 

the set of all CT’s included as a part of the query context. Intuitively, using this approach, 

the final query likelihood model is broken up into four parts: 

1. The likelihood that the document generated the query based on the terms which 

are seen in the query and seen in the document: [λ pmle(w|d)] 

2. The likelihood that the document generated the query based on smoothing terms 

from the collection which are seen in the query: [(1-λ) pcoll(w)] 

3. The likelihood that the document generated the query based on terms which are 

seen in the document and assumed to be a part of the query context: [α(t) λ 

pmle(t|d)] 

4. The likelihood that the document generated the query based on smoothing terms 

from the collection which are assumed to be a part of the query context: [α(t)(1- 

λ)pcoll(t)] 
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While (1) and (2) are part of the well-established query likelihood approach, terms (3) 

and (4) are the contribution of this approach and introduce the Question Context Model. 

 

4.2.2 Experimental Methodology 

The experimental methodology we used is shown as a block diagram in Figure 13. 

To validate our approach, we have used factoid questions which were a part of the TREC 

2006 Question Answering Track question set. The TREC AQUAINT dataset (E. M. 

Voorhees & D. K. Harman, 2005) was first pre-processed and indexed.  Once the corpus 

pre-processing was completed, our next task was to generate an Aspect Model for each 

topic in the question set using PLSA.  We used the Lemur implementation (Ogilvie & 

Callan, 2001) of PLSA in our experiments.  As discussed in the previous section, the 

PLSA models were trained using a corpus of the top 50 documents retrieved for each 

topic using Indri (Strohman et al., 2005), and we trained our models using 50 z-

categories. In addition, we used part-of-speech tagging to limit the words which were 

provided to PLSA to nouns only.  

We use the following strategy to perform Question Contextualization: 

• For each topic in the TREC 2006 Question Answering Track question set, obtain 

a set of candidate documents that represent the knowledge contained in a corpus 

by using a well-established IR engine. 

• For each topic in the question set, determine a set of corpus-specific concepts (i.e., 

aspects) by running PLSA against the candidate documents collected 
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• Once we have the sets of words that define corpus-specific concepts for a 

particular topic from PLSA, we can calculate a distribution that approximates 

P(z|R) for each question related to that topic by using the model described in 

Section 3.2.  

• For each question, rank the concepts by P(z|R) and the words related to those 

concepts by P(w|z).  Consider those concepts which have the highest values for 

P(z|R) as potential candidate concepts for inclusion into the Query Context Model 

• Once we have obtained a set of top-ranked concepts, we can consider the top-

ranked Context Terms within those concepts as Candidate Context Terms (CCTs) 

to be included as a part of the Question Context. 

• Determine the value of α(t) for each CCT t.  Use these values to construct the 

language model for the updated query. 

 



125 

AQUAINT

Corpus

Pre-processed

Documents

Collection

Pre-processing

and Indexing

TREC 2006

Questions

TREC 2006,

Judgments

Queries

Candidate

Documents

IR Engine

Answer

Matching

Background 

“Concepts” 

in Corpus

Query terms

Query context

Question 

Contextualization

Generate Corpus 

Aspect Model 

 

Figure 13:  Experiment Methodology for the Context-Based Mixture Model 

Approach to Incorporate the Question Context Model into Candidate Document 

Selection 

 

For the purposes of evaluating the effectiveness of our theoretical model, we use the 

well-known metrics of precision and recall (Manning et al., 2007).  It should be noted 

here that while our initial experiments used the coverage and redundancy metrics, here 

we revert to precision and recall, which are more standard in the literature.  Furthermore, 

we note here a key distinction between coverage and recall – recall measures the extent to 

which all correct answers to a question are retrieved, coverage measures the extent to 

which any answer to a question is retrieved.  Since, there were on average between 3-5 

globally correct answers for each TREC question, it is easier to achieve high coverage 

than higher recall. We consider the documents which are relevant to a given question in 
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the corpus to be only those documents which contain the globally correct answers as 

given in the TREC 2006 judgments.  

 

4.2.3 Results and Discussion 

Our results are presented in Figure 13 and Figure 14.  As a baseline for 

comparison purposes, we used the Kullback-Leibler divergence language modeling 

strategy (Lafferty & Zhai, 2001).  As our methodology uses a feedback approach, we 

compare our results to both the base KL-divergence with blind feedback using a mixture 

model approach.  This is appropriate as this approach is typically used as the baseline for 

smoothing approaches (Murdock & Croft, 2004).  We used the Lemur  (Ogilvie & 

Callan, 2001) implementation of KL-divergence for our baseline metrics.   

Figure 13 and Figure 14 show the precision and recall results of our approach 

against the baseline when the top 1, 5, 10, and 20 aspects are included as a part of the 

Query Context Model. As can be seen, our results are promising: when the top 1 and top 

5 aspects are included as a part of the Query Context Model, both precision and recall 

results compare favorably against the baseline language modeling retrieval methods.  

However, as the number of aspects included in the Question Context Model increased, 

the precision and recall of our queries decreased dramatically.  Intuitively, this makes 

sense because as we broadened the amount of information contained in the Query 

Context model, we increased the likelihood that information potentially non-relevant to 

the query be included.  These results also validate our model at a very basic level; in 

other words, our ranking of aspects by P(z|R) does accurately reflect the ordering of 

aspects in order of relevance to a query 
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Figure 14:  Precision Results for the Context-Based Mixture Model Approach  

 

 

 

Figure 15: Recall Results for the Context-Based Mixture Model Approach 

 

 

4.3. Context-Based Query Expansion and Context-Based Smoothing 

Our second approach to incorporating the Question Context Model into the 

Candidate Document Selection process is the Context-Based Query Expansion and 

Context-Based Smoothing.  In the following sections, we first discuss our theory and 
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approach, then introduce our experiment methodology and finally discuss our 

experimental results. 

 

4.3.1 Theory and Approach 

To incorporate the Question Context Model (QCM) into an IR framework, we 

consider that there are essentially two sides to the “zero-frequency” (Witten & Bell, 1991) 

problem : (1) A query input to a QA system rarely contains all of the words that would be 

relevant to the information need that the query represents; and (2) A document rarely 

contains all of the words that are related to the information content of the query.  To 

examine the effectiveness of the proposed Query Context Model (QCM), we need to 

understand its effectiveness when applied to both facets of the “zero-frequency” problem: 

context-based query expansion and context-based document smoothing. 

First, we consider using a query expansion approach.  In this case, the Aspect-

Based Relevance Language Model, P(z|R), provides a way to quantify the relevance of an 

aspect to a query.  PLSA also provides a posterior probability P(w|z), which quantifies 

the relationship between an aspect and an individual Context Term associated with the 

aspect. We define Candidate Context Terms (CCTs) by first ranking CTs based on a 

posterior probability P(w|z), and then selecting the top-ranked CTs. (This is the same 

definition as that provided in the previous section when discussing the Question 

Contextualization process.)  We can define a weight, α(w), that defines the relevance of 

an individual Candidate Context Term (CCT) to a query as follows: 

)|()|()( zCCTPRzPCCT =α   (41) 
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Here, we approach query expansion by weighting each CCT that is added to the query by 

this weight α(CCT).  The final query submitted to the IR system is a composite of the 

original query with a term weight of 1 with the CCTs weighted with α(CCT). 

When considering the flip side of the “zero frequency” problem, we propose a 

linear interpolation approach to document smoothing.  The intuition behind our approach 

is that a document which contains CCTs should have a higher likelihood of generating 

the query.  We propose to interpolate a document model PM(w|d) with information from 

the Question Context Model (QCM).  Mathematically, we represent the interpolation 

approach as follows:  

)|(*)|()|(*))|(1()|( QCMwPRzPdwPRzPdwP normavgMavg +−=  (42) 

Here, Pavg(z|R) denotes the average relevance of the aspects that are included as a part of 

the Question Context Model.  In the simple case where only the top-ranked aspect is 

included as a part of the Question Context, this reduces to the highest P(z|R) value for the 

query. 

The term Pnorm(w|QCM) denotes a normalized P(w|z) measure for each word in 

the Question Context Model: 
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∑
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Since the Question Context Model contains only CCTs in the top-k ranked aspects, it 

does not include every aspect that is part of the original PLSA model, nor every word that 

was associated with those aspects. Therefore, we must normalize the P(w|z) values that 
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were extracted from PLSA if our model is to remain a probability distribution.  We 

normalize the P(w|z) values by summing P(w|z) for all aspects in the QCM which include 

the Context Term (CT) w,  and then dividing this by the sum P(w'|z) of all words w' 

which are included as Candidate Context Terms (CCT) for aspects that are included as a 

part of the QCM.   

 

4.3.2 Experimental Methodology 

The experimental methodology we used is shown as a block diagram in Figure 16. 

To validate our approach, we have used a random set of 100 factoid questions from the 

Text Retrieval Conference (TREC) 2006 Question Answering Track question set. Each 

TREC factoid question is associated with a question topic.  In the TREC 2006 question 

set, there are 75 topics, each with approximately 5 factoid questions associated with it, 

for a total of 403 factoid questions.  These questions were processed against the TREC 

AQUAINT dataset.  The first step of our experimentation was to index and pre-process 

the AQUAINT dataset using some standard techniques such as stemming and stopword 

removal.   
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Figure 16:  Experiment Methodology for the Context-Based Smoothing and 

Context-Based Query Expansion Approaches to Candidate Document Selection 

 

We then used the following strategy to perform Question Contextualization: 

• For each topic in the TREC 2006 Question Answering Track question set, we 

obtained a set of 50 top-ranked documents using Indri (Strohman, 2005) to serve 

as the training documents for PLSA. We determined empirically that 50 

documents yielded the most effective training model for our purposes. 

• For each topic in the question set, we determined a set of corpus-specific concepts 

(i.e., aspects) by running PLSA against the candidate documents collected.  Our 

PLSA model was trained using 50 z-categories. In addition, we used part-of-

speech tagging to limit the words to include only nouns (including proper nouns).  

We used the Lemur implementation (Ogilvie, 2001) of PLSA in our experiments.   
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• We then calculated the distribution that approximates P(z|R) for each question 

related to that topic by using the Aspect-Based Relevance Model approach 

proposed in this paper.  

• For each question, we ranked the aspects (or concepts) by P(z|R) and their 

associated CTs by P(w|z).  We considered only those aspects which had the 

highest values for P(z|R) as potential candidate concepts for inclusion into the 

QCM. 

Once we have obtained a set of top-ranked concepts (or aspects), we can consider the 

words within those concepts with the highest posterior probabilities as CCTs to be 

included as a part of the Question Context. 

Once created, the Question Context Model is then incorporated into the QA 

framework using both the Approach 1 and Approach 2 methodologies described earlier. 

We consider the documents which are relevant to a given question to be only those 

documents which contain the correct answers as given by the TREC 2006 judgments (eg. 

we only consider a documents which contain globally correct answers). 

 

4.3.3 Results and Discussion 

We used the Ponte query expansion approach which is based on a language 

modeling approach for our query expansion methodology.  This method is appropriate to 

use as a baseline as it employs a query expansion approach based on the top-N retrieved 

documents. Language modeling including Ponte expansion has been used as a baseline 

by other query modeling approaches (Balog, Weerkamp, & de Rijke, 2008). 



133 

Figure 17 shows the results of our query expansion methodology using a Question 

Context that includes the top 20 words from the top-5 aspects.  Our results show the 

following: 

• A 9.4% improvement in recall performance when the Question Context includes 

the top-1 aspect, at 50 documents retrieved 

• A 9.4% improvement in recall performance when the Question Context includes 

the top-1 aspect, at 100 documents retrieved 

• A 9.3% improvement in recall performance when the Question Context includes 

the top-5 aspects, at 100 documents retrieved    

Using the Wilcoxon signed rank test, we determined that these results are statistically 

significant (p < 0.05) from the baseline approach.   

 

Figure 17:  Recall of Context Based Query Expansion vs. Ponte Query Expansion 

 

These results show that our methodology shows significant improvement in 
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applications that feed a Question Answering system.  In effect, by increasing the recall of 

relevant (answer-bearing) documents we are providing better opportunities for the second 

stage of QA system to find the correct answer.  It should be noted that using our system, 

we have a recall of 80% at 100 documents returned when the Question Context contains 

the top-1 aspect.  This means that 80% of the answer-bearing documents are returned in 

the top-100 results (i.e., documents) that are submitted to the second stage of QA for 

processing.  

For the Query Context-based document smoothing approach, we compared our 

smoothing approach against the baseline Kullback-Leibler (KL) divergence approach 

with blind feedback.  This is appropriate as this approach is typically used as the baseline 

for smoothing approaches (Murdock & Croft, 2004).  The results of this methodology are 

shown in Figure 18.  The results of this approach were less conclusive.  Using the 

Wilcoxon signed rank test, no significant difference in behavior (p < 0.05) was observed 

between Context-based smoothing and the baseline approach. 
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Figure 18:  Recall of Context Based Smoothing vs. KL-Divergence with Blind 

Feedback 

 

We do not include precision results for either of the two methods as these results do not 

show any significant differences (either positive or negative) from the baseline 

approaches. 

To better understand the results of our methodology for both query expansion and 
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are “golf tour.”  Similarly, when the question “What tobacco company sponsors the 

Winston Cup Series?” is processed, the first three words to be added to the Question 
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likelihood of finding relevant documents than by the use of the terms in the query alone.  
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“LPGA” would generate the query is similar to the likelihood that a document that 

includes the terms “LPGA,” “golf” and “tour” would generate the query.  We believe that 

this is a characteristic of newswire data, which is typically contains articles focused 

around a tight topic area.  Our future efforts should include investigation into domains 

which do not share this characteristic. 

In conclusion, we have formally presented a novel approach that uses statistical 

language modeling methods to create a Question Context Model (QCM).  We then 

incorporated the QCM into the IR stage of QA using two approaches, one of which 

shows significant improvements in recall. This improvement in recall is critical to 

Question Answering, as it provides more opportunities for the second stage of the 

Question Answering system to extract and collect the correct answers.  
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5. ANSWER VALIDATION 

This chapter describes our experiments and results as we apply the Aspect-Based 

Relevance Language Model and our Question Context Model to Answer Validation.  To 

this end, we first motivate a novel concept called Answer Credibility, which is an integral 

part of our approach and methodology.  As a part of this discussion, we present a brief 

summary of credibility in the computational sciences. We then describe two separate 

approaches to modeling Answer Credibility and incorporating our model into the Answer 

Validation process:  a Naïve Approach and the Perspective Similarity Approach.  For 

each approach, we discuss the foundational algorithms, the experiment methodology and 

the empirical results.  We conclude the chapter with an in-depth view of the parameter 

estimation problem associated with our model for Answer Credibility. 

 

5.1 Answer Credibility:  Motivation 

In order to incorporate Question Context into the second stage of Question 

Answering, we consider the relationship between Question Context and answers.  We 

define Context Terms (CTs) to be words which are part of the Question Context, and 

related to an aspect z that is included in the Question Context by a probability P(CT|z).  

Empirically, we can review the words that are added to the Question Context as we add 

CTs from aspects that are ranked by their P(z|R) values.  For example, in response to the 

question “Where was Wolfgang Amadeus Mozart born?” the words “music,” 

“symphony,” “opera,” “Austria” and “Vienna” are added to the question context from the 

top-ranked aspect.  We can see that the most correct answer to this question, “Salzburg” 
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is not one of the CTs that are included in the Question Context, but we can see that some 

CTs (“Austria”, “Vienna”) are directly related to the correct answer.  Ideally, an Answer 

Context is a set of terms (and their associated probabilities) that are semantically related 

to the correct answer to a question.  Our observations lead us to conclude that Question 

Context is not the same as Answer Context; if the two were one and the same the 

Question Context would include all CTs related to “Salzburg,” not just those related to 

Wolfgang Amadeus Mozart and Salzburg. For example, “Salzburg” is the correct answer 

to the question “What was the setting for the film Sound of Music?”  If the Question 

Context was exactly the same as the Answer Context, it might include terms related to 

Sound of Music.  

Our observations lead us to conclude that Question Context is not the same as 

Answer Context. To this end, we believe that there is an overlap between Question 

Context and Answer Context.  We define the region that Question Context overlaps 

Answer Context as the Answer Perspective associated with the question, and this 

relationship is depicted in Figure 19. 
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Figure 19:  Graphical Representation of Question Context, Answer Context and 

Answer Perspective 

 

Our approach to Answer Validation seeks to answer the following question:  what is the 

strength of the relationship of a source document from which a candidate answer was 

derived to the Answer Perspective (eg. the overlap between the Question Context and the 

Answer Context)?  If the relationship is strong, it stands to reason that the believability of 

the candidate answer is high.  If the relationship is weak, we have less evidence that the 

candidate answer is valid.  Our approach to Answer Validation is motivated by the desire 

to quantify the strength of the relationship between a source document and Answer 

Perspective; this relationship is what we call Answer Credibility.  
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aspects of a computer product, each of which can be assessed in terms of its credibility to 

the end user: (1) the device, (2) the interface, (3) the functionality, and (4) the 

information. A brief description of each of these aspects of credibility follows: 

• Device credibility relates to the physical aspect of the computing product.  For 

example, device credibility is related to the form of the device, its physical 

structure and appearance, its weight and its ruggedness. 

• Interface credibility relates to the display of the computer product as well as to 

the interaction experience.  Interface credibility is primarily related to what 

the user can see and/or touch when providing inputs to and receiving outputs 

from the device. 

• Functional credibility relates to what a computer product does and how it is 

done. Functional credibility is closely related to the user’s trust in the 

computational capabilities of the device. 

• And finally, Information credibility relates to how believable the information 

is from the computing product.  

Fogg (Fogg & Tseng, 1999) argues that the design of any model of credibility must be 

considered in light of these four categories.  To this end, we categorize our model of 

credibility as falling squarely into the last category of Information credibility. 

A very different approach is Meola’s (Meola, 2004) contextual model of Web 

information evaluation. “Meola critiqued the idea of using checklists to evaluate online 

information because he believes they are unwieldy for users to perform (e.g., one 

checklist requires Internet users to answer over 112 questions per Web site viewed), and 



141 

thus are an unrealistic approach to teaching critical evaluation (Metzger, 2007).”  Meola’s 

contextual model focuses on information external to a particular site. By using external 

information to establish credibility, Meola (Meola, 2004) contends that online 

information “is located within its wider social context, facilitating reasoned judgments of 

information quality.” Meola’s approach recommends three techniques to determine the 

quality of online information: 

• The first technique is promoting peer and editorially reviewed resources that 

are available online. Information intermediaries should inform Internet users 

of high-quality, vetted resources.  

• The second technique is comparing information found on a Web site to other 

Web sites and/or to offline sources.  

• The final technique is corroboration. Similar to comparison, corroboration 

involves seeking more than one source to verify information on a given topic. 

Users may assess the accuracy and reliability of information through 

corroboration as a convergence of facts and/or opinions from a variety of 

sources.  

Meola argues that the contextual approach to online information evaluation is more 

practical than are traditional checklist approaches, and thus will be more likely to be used 

by online information seekers.  It should be noted here that the last two techniques can be 

thought of conceptually as Answer Validation approaches, specifically when one 

considers statistical methods of Answer Validation such as the approach proposed by 

Magnini (Magnini, Negri, Pervete et al., 2002; Magnini, Negri et al., 2002a).  Both of the 
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approaches to Answer Credibility presented in the following sections can be thought of as 

following as falling into the latter two classes of techniques. 

 

5.2 Answer Credibility:  Naïve Approach 

Our first approach to modeling Answer Credibility and incorporating our model 

into the Answer Validation process is a Naïve Approach.  In the following sections, we 

first discuss our theory and approach, then introduce our experiment methodology and 

finally discuss our experimental results.  We also present a brief discussion of the 

OpenEphyra Question Answering system which was used as a framework for our 

experiments. 

 

5.2.1 Theory and Approach 

Our mathematical representation of Answer Credibility attempts to quantify the 

reliability of a source using the semantic Question Context. We define Answer 

Credibility to be a similarity measure between the semantic Question Context built via 

the Aspect-Based Relevance Language Model and the source document from which the 

answer was derived. As we derive a statistical model of Question Context, our model of 

Answer Credibility is likewise a statistical one.  

From the Aspect-Based Relevance Language Model, we can view the Question 

Context (or Answer Perspective) as a document, having a document language model.  

Since the Aspect-Based Relevance Language Model provides us a mechanism to rank the 

aspects associated with a particular question, we include only the top-N most relevant 

aspects in the Question Context to circumvent semantic drift.  Moreover, since we can 
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rank the words within each aspect by their posterior probability, p(w|z), an we include 

only the top-N words, called Context  Terms, associated with each relevant aspect in the 

Question Context.  To ensure that the resulting model remains a probability distribution 

(i.e. sums to 1 over all w), however, we must perform some normalization. 

Mathematically, we can represent this as Pnorm(w|QC), which denotes a 

normalized posterior probability for each word in the Question Context: 
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We normalize by summing P(w|z) for all aspects in the Question Context (QC) which 

include the word w,  and then dividing this by the sum of P(w'|z) of all words w' which 

are included in the set of Context Terms (CT) for aspects that are included in QC. 

Once this document language model for the Question Context is generated, we 

can use the well-known Kullback-Leibler divergence method (Lafferty, 2001) to compute 

the similarity between the Question Context document model and the document model 

for a document containing a candidate answer.  This similarity measure is what we call 

the Answer Credibility:  
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Here, P(w|d) is the document language model for a document containing a candidate 

answer.  We propose that Answer Credibility is not an absolute metric which by itself can 

be used to determine the correctness or incorrectness of an answer in a QA system.  The 
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nature of QA is such that there are numerous factors which are required to determine the 

right answer.  The majority of these are, by their very nature, rooted in Natural Language 

Processing and Information Extraction.  We do, however, believe that Answer Credibility 

should be an influencer of a QA system’s answer score.  We propose an interpolation 

technique that modulates an answer’s score during the Answer Selection process using 

Answer Credibility.  This interpolation method is given mathematically in the equation 

below: 

ibilityAnswerCredscorescore **)1(' λλ +−=  (46) 

 

Here, score represents the answer score prior to interpolation with Answer Credibility, 

score' represents updated score value after interpolation, and λ represents an interpolation 

constant. 

In our model, we set λ using P(z|R) distribution which is the outcome of the 

Aspect-Based Relevance Language Model.  Fundamentally, P(z|R) describes the 

likelihood that a given aspect z is relevant to an information need given by a question. If 

we average the values of P(z|R) for all aspects which are included in the Question 

Context, we have a measure that describes how relevant the Question Context is to an 

information need.  Since the Answer Credibility measures the similarity between a 

Question Context and a given document, we propose that its influence on the final answer 

score should be modulated by the P(z|R) measure of relevance provided by the Aspect-

Based Relevance Language Model. 
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5.2.2 The OpenEphyra Question Answering System 

Despite our early implementation efforts done as a part of the 2007 TREC 

Question Answering exercise described in Chapter 3, we found that in order to effectively 

conduct evaluate our Answer Validation methodology, we needed a proven Question 

Answering framework with a robust Answer Extraction capability.  Our framework 

produced very low precision and recall on the TREC 2007 QA testset.  In addition, we 

did not fully develop an Answer Extraction methodology, since Answer Extraction was 

not a focus area for our research.  However, the Answer Validation process uses Answer 

Extraction results; the evaluation of our methodology would be meaningless if a well-

developed Answer Extraction process did not fuel our Answer Validation algorithm.  

Given this situation, we make use of the OpenEphyra framework which is 

introduced in (Schlaefer, Gieselmann, Schaaf, & A., 2006) to provide an Answer 

Extraction mechanism.  OpenEphyra is an extensible Question Answering framework 

that was released into the open-source domain in February 2008 by Carnegie Mellon 

University.  Ephyra (prior to release in the open source domain) had competed in several 

TREC QA exercises; the precision and recall results produced by Ephyra in 2007 placed 

it in the upper third of the competing systems in terms of factoid accuracy.  As such, we 

can assume that the Answer Extraction component of Ephyra is well-developed and 

provides us a suitable platform on which to base our experiments. 

Ephyra is organized as a pipeline composed of standardized components for query 

generation, answer extraction and answer selection. The components of the pipeline 

(called filters) can be combined and arranged arbitrarily, and different configurations can 

be used for different question types. This architecture facilitates experimenting with 
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various setups and allows integrating multiple Question Answering techniques into a 

single system. To incorporate a new technique for Answer Validation, one can simply 

plug in an additional filter into the pipeline.  A filter eliminates inappropriate results and 

creates new results from existing ones (e.g. by extracting factoid answers from a text 

snippets) or rescores the results according to a specific feature. At each stage of the 

pipeline, the output is a ranked list of answers, each of which is associated with a source 

document and a score.  

 The following filters are provided by OpenEphyra to support processing of TREC 

QA question series.  These filters are presented in the order in which they are processed 

as a part of the filter pipeline. 

• Answer Type Filter:  Extracts factoid answers of the expected answer types from 

text passages. This part of the filtering process is high recall, but low precision. 

• Answer Pattern Filter: Uses known (pre-determined) answer patterns to extract 

factoid answers from text passages and to rank them. It is only applied if the 

question could be interpreted during the Question Analysis phase. 

• Filter Predicate Extraction Filter:  Extracts predicates which are similar to those in 

the question from documents in the corpus. 

• Truncation Filter:  This filter truncates the answer strings. It drops the following 

prefixes and suffixes: blanks and some special characters, articles, and 

prepositions. After truncation, similar answers are merged. 
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• Stopword Filter:  Drops a result if the answer string contains only function words 

(“by”, “for”, “to”), single characters (except digits), an interrogative (“who”, 

“what”), a single bracket, quotation mark or is an adverb. 

• Question Keywords Filter:  Drops a result if the answer string contains a keyword 

from the question. This is useful for eliminating answers that simply repeat the 

question. 

• Score Normalization Filter:  A filter that normalizes the scores of the answer 

candidates by applying a trained classifier.  This classifier is trained on data that 

matches words to the category of data that they are associated with. 

• Score Combination Filter:  Combines and normalizes the score of a single answer 

that might have been extracted using different techniques.  The data going into 

this filter is an un-normalized list of answer – this filter performs the data (as well 

as the score) normalization process. 

• Factoid Subset Filter:  Checks a set of factoid answers for subset relations. If a 

factoid answer is a subset of another factoid answer (i.e. its tokens are a subset of 

the tokens of another answer), then the former is dropped and its score is 

transferred to the latter.  This filter ensures that the answers returned are as 

precise as possible. 

• Duplicate Filter:  Drops duplicate results. Results are considered equal if the 

normalized form of two answer strings is the same. The result with the higher 

score is kept. 
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• Score Sorter Filter:  Sorts the results by their scores in descending order. The sort 

is guaranteed to be stable. 

The output of the Duplicate Filter can be considered to be the final result of Ephyra’s 

Answer Extraction processing.  The Score Sorter Filter is a computational process that 

simply orders the final set of answers by their scores; we do not consider this to be a part 

of the core Answer Extraction mechanism. 

 

5.2.3 Experiment Methodology 

The experimental methodology we used is shown as a block diagram in Figure 20. 

To evaluation our approach, we have used factoid questions which from the Text 

Retrieval Conference (TREC) 2006 Question Answering Track question set. These 

questions were processed against the TREC AQUAINT dataset (E. M. Voorhees & D. 

Harman, 2005).  The first step of our experimentation was to index and pre-process the 

AQUAINT dataset using some standard techniques such as stemming and stopword 

removal.   

We then used the following strategy to perform Question Contextualization:  

• For each topic in the TREC 2006 Question Answering Track question set, we 

obtained a set of 50 top-ranked documents using Indri to serve as the training 

documents for PLSA. For each topic in the question set, we determined a set of 

corpus-specific concepts (i.e., aspects) by running PLSA against the candidate 

documents collected.  Our PLSA model was trained using 50 z-categories. In 

addition, we used part-of-speech tagging to limit the words which were included 

as a part of the PLSA training documents to include only nouns (including proper 
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nouns).  We used the Lemur implementation (Ogilvie & Callan, 2001) of PLSA in 

our experiments.   

• We then calculated the distribution that approximates P(z|R) for each question 

related to that topic by using the approach described in this paper.  

• For each question, we ranked the concepts by P(z|R) and the words related to 

those concepts by P(w|z).  We considered only those aspects which had the 

highest values for P(z|R) as potential candidate concepts for inclusion into the 

Query Context Model. 

Once we have obtained a set of top-ranked concepts, we can consider the words within 

those concepts with the highest posterior probabilities as candidate CTs to be included as 

a part of the Question Context. 

Figure 20:  Experiment Methodology for Answer Validation Using the Naïve 

Approach to Modeling Answer Credibility  
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The OpenEphyra Question Answering framework (Schlaefer et al., 2006) was then used 

as the framework for our Answer Credibility implementation.  Specifically, we inserted 

an Answer Credibility filter that implements the algorithm described in section 5.2.1 of 

this document as a step in the OpenEphyra filtering pipeline.   

For the purposes of evaluating the effectiveness of our theoretical model, we use 

the accuracy and Mean Reciprocal Rank (MRR) metrics (E. M. Voorhees & D. Harman, 

2005).  Accuracy is a simple metric that is used to evaluate results for TREC factoid 

questions.  An answer has an accuracy score of 1 if both the answer text as well as the 

document from which the answer is derived is correctly identified by the system.  

Otherwise, the answer has an accuracy of 0.  MRR evaluates the rank at which the QA 

system returns the correct answer. MRR increases as the score of the correct answer 

increases in relationship to scores of incorrect answers. Mathematically, MRR is defined 

as follows: 

∑
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Here, N is the set of questions being evaluated and ranki is the rank of the correct answer 

to question i.  MRR is a meaningful measure for our methodology as it highlights any 

changes in answer ranking from the baseline, which is of critical importance when 

evaluating the effectiveness of Answer Selection methodologies. 

The TREC 2006 judgments include a set of correct answers and documents 

associated with those answers for each question.  We use these evaluation results to 

determine both answer accuracy and MRR.  We consider an answer to be correct only if 

it is marked globally correct in the TREC QA judgments. 
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5.2.4 Results and Discussion 

We compared the results of our approach against the baseline OpenEphyra 

Question Answering system.  Our methodology evaluates the increase in MRR and 

accuracy that is achieved by adding out Answer Validation strategy on top of the baseline 

system that contains no specific Answer Validation components.  Our results are 

presented in Table 6 and Table 7 

Table 6:  Average Accuracy of Baseline vs. Baseline Including Answer Credibility 

Using the Naive Approach   

 

To facilitate interpretation of our results, we sub-divided the set of factoid questions into 

categories by their question words, following the example of Murdock (Murdock, 2006).  

The shaded cells in both tables indicate categories for which improvements were 

observed.  The paired Wilcoxon signed-rank test was used to measure significance in 

improvements for MRR; the shaded cells in Table 7 indicate results for which the results 

were significant (p<0.05).  Due to the binary nature of the results for accuracy at the 

Question 

Category 

Question 

Count 

Baseline 

Accuracy 

Baseline + Answer 

Credibility Accuracy 

How 20 0.25 0.20 

how many 
58 0.12 0.07 

how much 

6 0.00 0.00 

in what 47 0.64 0.55 

What 114 0.23 0.28 

what is 28 0.18 0.18 

When 29 0.21 0.10 

Where 23 0.30 0.30 

Where is 6 0.33 0.33 

Which 17 0.29 0.18 

Who 17 0.47 0.59 

who is 14 0.57 0.71 

who was 24 0.38 0.50 
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question level, a similar significance test was found to be inappropriate at the question 

level.  

Our results show the following: 

• A 5% improvement in accuracy over the baseline for “what”-type questions. 

• An overall improvement of 13% in accuracy for “who”-type questions, which 

include the “who,” “who is” and “who was” categories  

• A 9% improvements in MRR for “what” type questions 

• An overall improvement of 25% in MRR for “who”-type questions, which 

include the “who,” “who is” and “who was” categories 

Table 7:  Average MRR of Baseline vs. Baseline Including Answer Credibility Using 

the Naive Approach   

 

While our methodology does show a slight improvement in MRR over all 

categories of questions over the baseline, this improvement was not significant at the p < 

Question 

Category 

Question 

Count 

Baseline MRR Baseline + Answer 

Credibility MRR 

How 20 0.33 0.28 

how many 
58 0.21 0.16 

how much 

6 0.08 0.02 

in what 47 0.68 0.60 

What 114 0.30 0.33 

what is 28 0.26 0.26 

When 29 0.30 0.19 

Where 23 0.37 0.37 

where is 6 0.40 0.40 

Which 17 0.38 0.26 

Who 17 0.51 0.63 

who is 14 0.60 0.74 

who was 24 0.43 0.55 
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0.05 level.  In general, our methodology showed a positive effect on the results of the 

Answer Selection process in terms of both accuracy and MRR for “who” and “what” type 

questions. 

 

5.3 Answer Credibility:  Perspective Similarity Approach 

Our second approach to modeling Answer Credibility and incorporating our 

model into the Answer Validation process is the Perspective Similarity Approach.  In the 

following sections, we first discuss our theory and approach, then introduce our 

experiment methodology and finally discuss our experimental results.   

 

5.3.1 Theory and Approach 

From the Aspect-Based Relevance Language Model, we can view the Question 

Context Model (QCM) as a document, having a document language model.  Since the 

Aspect-Based Relevance Language Model provides us a mechanism to rank the aspects 

associated with a particular question, we include only the top-N most relevant aspects in 

the Question Context Model to circumvent semantic drift. 

Mathematically, we represent the Question Context Model as a distribution 

Pnorm(w|QCM), which denotes a normalized posterior probability for each word in the 

Question Context Model: 

∑

∑

∈
∈

∈
∈

=

QCMz
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)|(

)|(              (48) 



154 

Since the Question Context Model contains only CCTs in the top-k ranked aspects, it 

does not include every aspect that is part of the original PLSA model, nor every word that 

was associated with those aspects. Therefore, we must normalize the P(w|z) values that 

were extracted from PLSA if our model is to remain a probability distribution.  We 

normalize the P(w|z) values by summing P(w|z) for all aspects in the QCM which include 

the Candidate Context Term (CCT), w,  and then dividing this by the sum P(w'|z) of all 

words w' which are included as Context Terms (CT) for aspects that are included as a part 

of the QCM.   

Once this document language model for the Question Context is generated, we 

can turn our attention to developing a model for Answer Context and Answer 

Perspective.  To this end, we propose that we can build an Answer Topic Model from the 

top-N documents associated with the candidate answer using a document modeling 

approach (Lafferty, 2001).  Since the query used to build the Answer Topic Model 

includes only the terms in the candidate answer, we can assume that all aspects associated 

with the candidate answer are included in the Answer Topic Model.  As such, we propose 

that the Answer Topic Model is an approximation of the Answer Context Model (ACM), 

for the candidate answer.  

At this point, we can use the well-known Kullback-Leibler divergence method 

(Lafferty & Zhai, 2001) to compute the similarity between the Question Context Model 

and the Answer Context Model.  We define this similarity as the Perspective Similarity 

between the Question Context Model and a candidate Answer Context Model. 

Perspective Similarity (PS) is defined mathematically by the following equation: 
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)|(

)|(
log)|(

ACMwP

QCMwP
QCMwPPS norm

w

norm∑=            (49) 

Here, Pnorm(w|QCM) is the normalized Question Context Model and P(w|ACM) is the 

distribution which represents the Answer Context Model (ACM). Now, let us suppose 

that we add the source document from which the candidate answer was derived to the 

Answer Context Model.  Then, we can calculate a new Perspective Similarity (PS') using 

the resulting model.  If  PS' > PS, we can deduce that the source document augments the 

similarity between the Question Context Model and the Answer Context Model.  

Likewise, if PS' < PS, we can deduce that source document detracts from the similarity 

between the Question Context Model and the candidate Answer Context Model.  That is, 

the likelihood that the source document is a part of the Answer Perspective is a function 

of the change in Perspective Similarity (PS' – PS).  This change in Perspective Similarity 

is defined as our model of Answer Credibility.  Our approach is represented graphically 

in Figure 21. 
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Figure 21:  Graphical Representation of the Perspective Similarity Approach to 

Modeling Answer Credibility 

 

We propose that Answer Credibility is not an absolute metric which by itself can 

be used to determine the correctness or incorrectness of an answer in a QA system.  The 

nature of QA is such that there are numerous factors which are required to determine the 

right answer.  The majority of these are, by their very nature, rooted in Natural Language 

Processing and Information Extraction.  We do, however, believe that Answer Credibility 

should be an influencer of a QA system’s answer score.  We propose an interpolation 

technique that modulates an answer’s score during the Answer Selection process using 

Answer Credibility.  This interpolation method is given mathematically in the equation 

below: 

ibilityAnswerCredscorescore **)1(' λλ +−=          (50) 
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Here, score represents a QA system’s answer score for a candidate answer prior to 

interpolation with Answer Credibility, score' represents an updated candidate answer 

score value after interpolation, and λ represents an interpolation constant. 

In these experiments, we set λ using the average of the P(z|R) values for all 

aspects which are included in the Question Context, as we did in the Naïve approach.  

Experiments presented later in this chapter describe the results of more sophisticated 

techniques to parameter estimation. 

 

5.3.2 Experimental Methodology 
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The experimental methodology we used is shown as a block diagram in Figure 22. 

To validate our approach, we have used factoid questions which from the Text Retrieval 

Conference (TREC) 2006 Question Answering Track question set. These questions were 

processed against the TREC AQUAINT dataset (E. M. Voorhees & D. Harman, 2005).  

The first step of our experimentation was to index and pre-process the AQUAINT dataset 

using some standard techniques such as stemming and stop-word removal.   

Figure 22:  Experimental Methodology for the Perspective Similarity Approach to 

Modeling Answer Credibility 

 

We performed Question Contextualization as described in section 5.2.4.  Our PLSA 

model was trained using 50 z-categories. In addition, we used part-of-speech tagging to 

limit the words which were included as a part of the PLSA training documents to include 

only nouns (including proper nouns).  We used the Lemur implementation (Ogilvie & 
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Callan, 2001) of PLSA in our experiments.  Lemur was also used to implement the 

Answer Context Model; we used part-of-speech tagging so that only nouns (including 

proper nouns) were the only words included in the Answer Context Model. 

The OpenEphyra Question Answering testbed (Schlaefer et al., 2006) was then 

used as the framework for our Answer Credibility implementation.  Specifically, we 

inserted an Answer Credibility filter that implements the algorithm described in section 

5.3.1 of this paper as a step in the OpenEphyra filtering pipeline.   

For evaluation, we use the accuracy and Mean Reciprocal Rank (MRR) metrics, 

as described in section 5.2.2.  The TREC 2006 judgments include a set of correct answers 

and documents associated with those answers for each question.  We use these evaluation 

results to determine both answer accuracy and MRR.  We consider an answer to be 

correct only if it is marked globally correct in the TREC QA judgments. 

 

5.3.3 Results and Discussion 

We compared the results of our approach against the baseline OpenEphyra 

Question Answering system.  Our results are presented in Table 8 and  

Table 9 below. To facilitate interpretation of our results, we sub-divided the set of factoid 

questions into categories by their question words, following the example of Murdock 

(Murdock, 2006).  The shaded cells in both tables indicate categories for which 

improvements were observed.  The paired Wilcoxon signed-rank test was used to 

measure significance in improvements for MRR; the shaded cells in  

Table 9 indicate results for which the results were significant (p<0.05).  Due to the binary 
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nature of the results for accuracy at the question level, a similar significance test was 

found to be inappropriate at the question level.  

 

Table 8:  Average Accuracy of Baseline vs. Baseline Including Answer Credibility 

Using the Perspective Similarity Approach   

 

Table 9:  Average MRR of Baseline vs. Baseline Including Answer Credibility Using 

the Perspective Similarity Approach   

 

Question 

Category 

Question 

Count 

Baseline 

Accuracy 

Baseline + Answer 

Credibility Accuracy 

How 20 0.25 0.15 

How many 58 0.12 0.10 

How much 6 0.00 0.00 

in what 47 0.64 0.57 

What 114 0.23 0.29 

what is 28 0.18 0.18 

When 29 0.21 0.10 

Where 23 0.30 0.48 

Where is 6 0.33 0.33 

Which 17 0.29 0.12 

Who 17 0.47 0.65 

Who is 14 0.57 0.71 

Who was 24 0.38 0.54 
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Our results show the following: 

• A 6% improvement in accuracy over the baseline for “what”-type questions. 

• A 17% improvement in accuracy over the baseline for “where”-type 

questions. 

• An overall improvement of 19% in accuracy for “who”-type questions, which 

include the “who,” “who is” and “who was” categories  

• A 9% improvements in MRR for “what” type questions 

• A 12% improvements in MRR for “where” type questions 

• An overall improvement of 37% in MRR for “who”-type questions, which 

include the “who,” “who is” and “who was” categories.  

 At this point, it can be seen that the Perspective Similarity approach yields 

improvements over the baseline approach.  In the remainder of this section, we examine 

Question 

Category 

Question 

Count 

Baseline MRR Baseline + Answer 

Credibility MRR 

How 20 0.33 0.30 

how many 

58 

0.21 0.19 

how much 

6 

0.08 0.02 

in what 47 0.68 0.62 

What 114 0.30 0.33 

what is 28 0.26 0.26 

When 29 0.30 0.12 

Where 23 0.37 0.42 

Where is 6 0.40 0.40 

Which 17 0.38 0.18 

Who 17 0.51 0.65 

who is 14 0.60 0.79 

who was 24 0.43 0.65 
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some examples of questions that showed improvement to better understand and interpret 

our results. 

First, we examine a “who” type question which was not correctly answered by the 

baseline system, but which was correctly answered after Answer Credibility was 

incorporated.  For the question “Who is the host of the Daily Show?” the baseline system 

correctly determined the answer was “Jon Stewart” but incorrectly identified the 

document that this answer was derived from.  For this question, the Question Context 

included the terms “stewart,” “comedy,” “television,” “news,” and “kilborn.”  (Craig 

Kilborn was the host of Daily Show until 1999, which makes his name a logical 

candidate for inclusion in the Question Context since the AQUAINT corpus spans 1996-

2000).  In this case, the correct document that the answer was derived from was actually 

the third one in the list.  The Answer Credibility filter was able to correctly increase the 

score of that document so that it was ranked as the most reliable source for the answer 

and chosen as the correct final result.  It should be noted here that the document 

containing the correct result actually described the transition in hosts on the Daily Show 

between Craig Kilborn and Jon Stewart; the inclusion of the term “kilborn” in the 

Question Context was likely the cause of the change in scoring. This example is 

promising because it shows the Answer Credibility filter performing the exact function 

that it was intended. 

Next, we consider a case where the correct answer was at a lower position in the 

answer list in the baseline results and correctly raised higher, though not to the top rank, 

after the application of the Answer Credibility filter.  For the question “What position did 

Janet Reno assume in 1993?” the correct answer (“attorney general”) was ranked 5 in the 
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list.  However, in this case the score associated with the answer was lower than the top-

ranked answer by an order of magnitude.  The Question Context for this question 

included the terms “miami,” “elian,” “gonzales,” “boy,” “attorney” and “justice.”  After 

the application of the Question Context filter, the score and rank of the correct answer did 

increase, but the increase was not enough to overshoot the original top-ranked answer. 

 

5.3.4 Limitations of Approach 

Categories for which the Answer Credibility had negative effect included “how 

much” and “how many” questions.  For these question types, the correct answer or 

correct document was frequently not present in the answer list.  In this case, the Answer 

Credibility filter had no opportunity to increase the rank of correct answers or correct 

documents in the answer list.  Furthermore, since we limited the terms included in the 

Question Context early on to only nouns, our methodology has limited applicability to 

those questions which require numerical answers.  This same reasoning also limits our 

applicability to questions that require a date in response. 

Finally, it is important to note here that the very nature of news data makes our 

methodology applicable to some categories of questions more than others.  Typically, 

current events flood the news with a large number of articles that report similar 

information in a short time window.  Since our methodology relies on the ability to derive 

semantic relationships via a statistical examination of text, it performs best on those 

questions for which some amount of supporting information is available. 

To further understand the reasons for the relative advantages and disadvantages of 

each method, we next need to undertake a detailed examination of the factors that 
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contribute to the successes of these approaches.  This in-depth examination is presented 

in the following section. 

 

5.4 Parameter Estimation Studies 

The interpolation parameter λ plays a critical role in out approach to incorporating 

Answer Credibility into the Answer Validation process.  In this section, we explore four 

methods for setting λ: 

1. A Naïve approach, where we set λ to a constant value across all questions 

2. The QCM-Based Approach, where we set λ to the average of the P(z|R) values for 

those aspects that are included in the Question Context Model.  It should be noted 

that this is the methodology that we used in the previous two sections.  The 

intuition behind this approach is that we want to “add-in” the Answer Credibility 

score based on the likelihood of relevance of the Question Context Model to the 

user’s question.  This approach implies that every question  

3. The Perspective Similarity Approach, where we set λ to the calculated value of 

the Perspective Similarity.  The intuition behind this approach is that we want to 

“add-in” the Answer Credibility score based on how closely related the Question 

Context is to the Answer Topic Model.  In this case, the Answer Topic Model 

does not include the source document from which the candidate answer was 

derived. 

4. The Modified Perspective Similarity Approach, where we set λ to the calculated 

value of Perspective Similarity'.  The intuition behind this approach is that we 
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want to “add-in” the Answer Credibility score based on how closely related the 

Question Context is to the Answer Topic Model and the source document for the 

candidate answer. 

Mathematically, the four cases are be represented as follows: 

1. tCons tan=λ        (51) 

2. ∑
=

=
N

i

i RzPN
1

)|(/1λ       (52) 

3. 
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4. 
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Here, N is the number of aspects included in the Question Context Model.  The definition 

of P(z|R) is the same as that previously provided in equation (36), and the definition of 

Pnorm(w|QCM) and Pnorm(q|ACM) are the same as that provided in equation (44) and (45). 

The difference between ACM and ACM' is that ACM includes documents other 

documents that are a part of the Answer’s context, but not the specific source document 

related to this question.  ACM' includes the source document for the candidate answer. 

 The results of our experiments are presented in Figure 23 and  Figure 24 and in 

Table 10 and Table 11. 
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Figure 23: Average MRR using the Naïve Approach for Setting the Interpolation 

Parameter (λ) 

 

 Figure 24: Average Accuracy using the Naïve Approach for Setting the 

Interpolation Parameter (λ) 
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Table 10: Comparison of Accuracy Across Three Methods for Setting the 

Interpolation Parameter (λ).  The approaches compared are a) the QCM-Based 

Approach b) the Perspective Similarity Approach and c) the Perspective Similarity' 

Approach 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 

Category 

Question 

Count 

Baseline 

Correct 

λ = 

Average 

P(z|R) 

λ = PS λ = PS’ 

How 20 5 3 3 3 

How many 

58 

7 6 6 6 

How much 

6 

0 0 0 0 

in what 47 30 27 27 29 

What 114 26 33 35 38 

what is 28 5 5 5 7 

When 29 6 3 4 4 

Where 23 7 11 11 12 

Where is 6 2 2 2 2 

Which 17 5 2 4 4 

Who 17 8 11 12 12 

Who is 14 8 10 10 11 

Who was 24 9 13 15 15 

Total 403 118 126 134 143 
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Table 11: Comparison of MRR Across Three Methods for Setting the Interpolation 

Parameter (λ).  The approaches compared are a) the QCM-Based Approach b) the 

Perspective Similarity Approach and c) the Perspective Similarity' Approach 

 

In the remainder of the section, we consider each method of setting λ and examine 

the advantages and disadvantages of each approach.  First, we consider the Naïve 

approach where Answer Credibility is added to the Answer Extraction score by a 

constant value of λ for all questions.  From Figure 23 and  Figure 24 we can see a 

degradation in both accuracy and MRR from the OpenEphyra baseline (the case where λ 

= 0).  As a result, we can conclude that the Naïve approach is not appropriate 

methodology for setting λ.  In our model, the success of Answer Credibility is tied to how 

well the Question Context Model “fits” the question.  If λ is set to a constant value for all 

questions, we attempt to treat all questions as though they had Question Context Models 

Question 

Category 

Question 

Count 

Baseline 

MRR 

λ = 

Average 

P(z|R) 

λ = PS λ = PS’ 

How 20 0.33 0.30 0.30 0.30 

How many 58 0.21 0.19 0.23 0.23 

How much 6 0.08 0.02 0.02 0.02 

in what 47 0.68 0.62 0.65 0.67 

What 114 0.30 0.33 0.36 0.42 

what is 28 0.26 0.26 0.26 0.32 

When 29 0.30 0.12 0.17 0.17 

Where 23 0.37 0.42 0.42 0.42 

Where is 6 0.40 0.40 0.15 0.26 

Which 17 0.18 0.12 0.17 0.17 

Who 17 0.51 0.65 0.68 0.68 

Who is 14 0.60 0.79 0.72 0.79 

Who was 24 0.43 0.65 0.71 0.71 

Average  0.27 0.32 0.36 0.37 
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and Answer Context Models with equal likelihoods of relevance.  This “one size fits all” 

model is not successful in the general case. 

However, when considering the significance of our Answer Credibility model, it 

is valuable to consider the accuracy and MRR values for the two extreme cases of λ; that 

is, in Table 12 we specifically consider accuracy and MRR for the cases where λ =0 and 

λ =1.  While performance degrades in general, we do see a marked improvement in 

certain categories for which our model is well-suited.  Specifically we see: 

• A 2% improvement in accuracy and a 9% improvement in MRR in “what” type 

questions, 

• A 21% improvement in accuracy and a 12% improvement in MRR for “where” type 

questions 

• A 23% improvement in accuracy and a 21% improvement in MRR for “who” type 

questions 

• A 21% improvement in accuracy and a 13% improvement in MRR for “who is” type 

questions 

• A 25% improvement in accuracy and a 36% improvement in MRR for “who was” 

type questions 

These results underscore the value of the Answer Credibility model for certain question 

categories in absence of the score provided by the baseline system.  These results are 

further re-enforced when we consider a graph of average Answer Credibility values 

broken out by question category, as depicted in  Figure 25.   Figure 25 shows the average 

Answer Credibility values for candidate answers for each question category; some of 
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these candidate answers correctly answer the question and some (the majority) of these 

candidate answers do not correctly answer the question.  We can see that for the 

categories of question for which our methodology performs the best, there is a large 

difference in average Answer Credibility values between the candidate answers that 

correctly answer the question and those that do not.  Thus, our methodology performs 

(for these categories of questions), the proper Answer Validation mechanism of being 

able to distinguish correct answers from incorrect answers. 

Table 12:  Accuracy and MRR using the Naïve Approach for Setting the 

Interpolation Parameter (λ) for the Cases where λ =0 and λ =1 

 

Question 

Category 

Question 

Count 

Baseline 

Accuracy 

( λ = 0) 

 

Baseline 

MRR 

( λ = 0) 

 

Answer 

Credibility

Accuracy 

λ = 1 

Answer 

Credibility 

MRR  

λ = 1 

How 20 5 0.33 1 0.16 

How many 58 7 0.21 2 0.12 

How much 6 0 0.08 0 0.02 

in what 47 30 0.68 6 0.26 

What 114 26 0.30 28 0.37 

what is 28 5 0.26 2 0.17 

When 29 6 0.30 2 0.16 

Where 23 7 0.37 10 0.42 

Where is 6 2 0.40 0 0.14 

Which 17 5 0.38 0 0.13 

Who 17 8 0.51 12 0.62 

Who is 14 8 0.60 11 0.68 

Who was 24 9 0.43 14 0.58 

Average  118 0.37 91 0.183 
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 Figure 25: Histogram of the Average Answer Credibility Values, Split by Question 

Category and Correct/Incorrect Answers 

 

When considering the average Answer Credibility score values, we find that we 

can also better understand our negative results.  In many cases, (“how,” “how many,” 

“which”) there is little to no difference in Answer Credibility values between correct and 

incorrect answers.  This leads us to believe that our approach is not able to discern correct 

answers from incorrect answers for these question categories. 

Next we consider the QCM-Based approach where Answer Credibility is added to 

the Answer Extraction score by a factor directly proportional to the likelihood of 

relevance of the terms in the Question Context Model.  From Table 10 and Table 11, we 

can see that this approach does better than the OpenEphyra baseline, both in terms of 

specific categories and overall, for all question categories.  To further examine why this 

approach is successful, it is useful to consider the distribution of the interpolation 

parameter across the various question categories.  Figure 26 shows the average values for 

the interpolation parameter (λ) respectively, grouped by question category and grouped 

by correct and incorrect answers.  That is, for a given Question Category, we consider the 
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values of λ for the entire list of candidate answers for every question in that category, 

some of which correctly answer the question and most of which do not.   

 Figure 26:  Histogram of the Average Values for the Interpolation Parameter (λ) 

for the QCM-Based Approach, Split by Question Category and Correct/Incorrect 

Answers 

 

 We see that for a given Question Category, the QCM-based approach makes no 

distinction between in interpolation parameters between correct and incorrect answers.  

That is, in this approach, all answers for a given question are given the same interpolation 

value.  This is true because the Question Context Model is assigned at the question level, 

and remains the same for every candidate answer that is considered for the question.  As 

such, in this approach, it is only Answer Credibility that provides us to the ability to 

distinguish between correct and incorrect answers. Furthermore, this approach does not 

take into account our original premise that Question Context is not the same as Answer 

Context; in this approach, Answer Context does not play any role in the determination of 

the interpolation parameter. 
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Next we consider the Perspective Similarity-based approach where Answer Credibility is 

added to the Answer Extraction score by an interpolation parameter that is set to be the 

same value as the Perspective Similarity.  From Table 10 and Table 11, we can see that 

this approach does better than the OpenEphyra baseline.  In this case, the interpolation 

parameter is graphed in  Figure 27 and we start to see a divergence between the values of 

λ for correct and incorrect answers.  This delta in λ values, on top of the deltas in Answer 

Credibility values observed in Figure 25 shows how this approach is able to distinguish 

between correct and incorrect answers.  Furthermore, since Answer Credibility is added 

to a candidate answer’s Answer Extraction score by a factor directly proportional to the 

similarity between the Question Context and Answer Context, we are able to vary the 

interpolation parameter at the level of an individual candidate answer.  However, this 

approach falters because there is no influence from the specific source document from 

which the candidate answer was derived.  This means that we are looking at a possibly 

incomplete picture of the full Answer Context. 
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 Figure 27:  Histogram of the Average Values for the Interpolation Parameter (λ) 

for the Perspective Similarity Approach, Split by Question Category and 

Correct/Incorrect Answers 

 

Next we consider the Perspective Similarity'-based approach where Answer 

Credibility is added to the Answer Extraction score by an interpolation parameter that is 

set to be the same value as the Perspective Similarity'.  In this case, we see a greater 

divergence between the values of λ for correct and incorrect answers than in the previous 

case.  This approach most accurately reflects our proposed model for Question Context 

and Answer Context.  The success of Answer Credibility is tied to the similarity between 

Question Context and Answer Context, which includes the specific source document 

from which the candidate answer was derived.   
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 Figure 28:  Histogram of the Average Values for the Interpolation Parameter (λ) 

for the Perspective Similarity' Approach, Split by Question Category and 

Correct/Incorrect Answers 

 

A summary table that shows the improvements in accuracy and MRR achieved by each 

variation of our Answer Credibility model is shown by Question Category in  

Figure 29 and  Figure 30.   

 

Figure 29:  Summary of Percent Improvements in Accuracy of the Answer 

Credibility Model over Baseline for all Parameter Estimation Approaches 
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 Figure 30:  Summary of Percent Improvements in MRR of the Answer Credibility 

Model over Baseline for all Parameter Estimation Approaches 

 

The following improvements were achieved by our Answer Credibility model across all 

Question Categories: 

• A 7% improvement in accuracy and a 12% improvement in MRR for the QCM-

based interpolation approach (where λ = average P(z|R) ) 

• A 14% improvement in accuracy and a 17% improvement in MRR for the 

Perspective Similarity-based interpolation approach (where λ = PS) 

• A 20.1% improvement in accuracy and a 19.4% improvement in MRR for the 

Perspective Similarity'-based interpolation approach  (where λ = PS') 
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for other question categories.  Furthermore, OpenEphyra has a set of approximately 120 

pattern types that are used to extract candidate answers.  Of these, we believe that the 

majority of the patterns are tied to “who,” “what” and “where” type questions, which 

further reinforces our insight.  We speculate that given a baseline system that had similar 

performance on “how,” “which” and “where is” type questions, we might be able to 

improve accuracy and MRR for those question categories as well.  Since our approach 

eliminates numbers and dates as a part of the Question Contextualization process, we do 

not expect to be able to achieve any improvements in accuracy or MRR for “how many”, 

“how much” or “when” type questions. 

 

 

5.4.1 Comparison with State-of-the-Art Approaches 

In this section, we compare our results with the results reported by state-of-the-art 

approaches to Answer Validation.  Specifically, we consider the results presented in (S 

Harabagiu & Hickl, 2006) using a Textual Entailment Method of Answer Validation.  

Using TREC 2006 data, the methods used by Harabagiu show a 20% improvement in 

accuracy and a 23% improvement in MRR over their baseline methods.  Our most 

promising results are for the case where the interpolation parameter is set using the 

Perspective Similarity'-based approach.  In that case, we see that accuracy overall 

increases from 118 (baseline OpenEphyra) to 142, which is an improvement of 20%.  

This is comparable to the results reported by Harabagiu.  Furthermore, our results show 

an average increase in MRR from 0.27 to 0.37, which is an improvement of 19.4% over 

the baseline.  This is slightly less than the reported increase in MRR from Harabaigu.   

These results show that in general, our methodology is best suited to the case where the 
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correct answer was highly ranked, but perhaps not the top answer in the list.  Our 

methodology is less successful than the Harabagiu method in elevating answers that were 

originally ranked very low in the list of candidate answers to top positions. 
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6. CONCLUSIONS AND FUTURE WORK 

In this chapter we conclude this dissertation work by highlighting our research 

contributions and by discussing future directions. We provide some suggestions about 

how our current work may be extended for application to other research areas such as 

inclusion of structured data sources into the Question Context Model, domain-specific 

QA, and incorporation of data fusion techniques with our methodologies.  

 

6.1. Summary of Contributions 

The research presented in this dissertation presents our work in applying 

statistical language modeling approaches, which have been proven successful in 

Information Retrieval applications, to Question Answering. Specifically, we define a 

theoretical model, the Aspect-Based Relevance Language Model, and then describe an 

approach that derives a Question Context Model from that theoretical framework.  We 

define a semantic Question Context Model to be background knowledge derived from the 

corpus that can be used to represent the user’s information need more completely than the 

terms in the query alone.  We incorporate this semantic Question Context Model into the 

both the first and second stages of the QA architecture.   

In the second stage of the Question Answering architecture, we model a novel 

concept called Answer Credibility.  Conceptually, Answer Credibility can be thought of 

as the similarity between the semantic Question Context Model and an Answer Topic 

Model associated with a candidate answer and its source document.  We propose that the 

higher this similarity score, the more believable the candidate answer.  Our approach is 

significant because: 
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1. We extend the usage of statistical language modeling techniques, which have 

been successfully applied to the first stage (the IR stage) of QA, into the second 

stage (the NLP and IE stage) of QA 

2. We use the corpus itself as a knowledge source, rather than relying on externally 

available semantic resources.   

 

The primary contributions of this research are as follows: 

1. Design of the Aspect-Based Relevance Language Model, which provides a 

mechanism of relating an aspect (as defined by PLSA) to a question, based on its 

likelihood of relevance.   We base our approach to modeling the Aspect-Based 

Relevance Model on the same set of assumptions that guide the Relevance-based 

Language Modeling approach.  We assume that for every information need (or question) 

there exists an underlying relevance model R.  In our model, we assume that R is 

assigned probabilities P(z|R) where z is a latent aspect of an information need, as defined 

by the PLSA Aspect Model.  Thus, the relevance to an information need is described not 

in terms of words, but in terms of the latent aspects or concepts associated with the 

information need.  Conceptually, this alternative representation of the information need 

includes context information via the inclusion of aspects that extends beyond knowledge 

related to the specific words themselves.  If we use P(z|R) and P(w|z) as ranking 

mechanisms, we can arrive at a Question Context Model that includes only the most 

relevant aspects for an information need, and only the words that are most closely related 

to those aspects.  We thus propose that the Aspect-Based Relevance Language Model can 

serve as the basis for a Question Context model.   
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2. Design of a Question Context Model, and the incorporation of the Question 

Context Model into the Candidate Document Selection process of a Question 

Answering architecture.   To incorporate the Question Context Model (QCM) into an 

IR framework, we consider that there are essentially two sides to the “zero-frequency” 

problem : (1) A query input to a QA system rarely contains all of the words that would be 

relevant to the information need that the query represents; and (2) A document rarely 

contains all of the words that are related to the information content of the query.  To 

examine the effectiveness of the proposed Query Context Model (QCM), we need to 

understand its effectiveness when applied to both facets of the “zero-frequency” problem: 

context-based query expansion and context-based document smoothing.  Our results 

show that when the top 1 and top 5 aspects are included as a part of the Query Context 

Model, both precision and recall results compare favorably against the baseline language 

modeling retrieval methods, and there is a significant improvement in recall performance 

as measured by the Wilcoxon signed rank test.  These results also validate our model at a 

very basic level; in other words, our ranking of aspects by P(z|R) does accurately reflect 

the ordering of aspects in order of relevance to a query.     

 

3. Design of an Answer Credibility Model, and the incorporation of the Answer 

Credibility Model into the Answer Validation process of a Question Answering 

architecture.   Our mathematical representation of Answer Credibility attempts to 

quantify the reliability of a source using the semantic Question Context Model as a basis.  

We first propose an approach that describes the relationship between the Question 
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Context Model, a calculated Answer Context Model and a novel concept called the 

Answer Perspective, which we define to be the overlap between the Question Context 

and the Answer Context.  We define Answer Credibility to be a similarity measure 

between the semantic Question Context built via the Aspect-Based Relevance Language 

Model and the source document from which the answer was derived. As we derive a 

statistical model of Question Context, our model of Answer Credibility is likewise a 

statistical one. Our results show improvements in accuracy and MRR for “what,” 

“where,” “who is,” “who was,” and “who” type questions.  Our approach does not show 

improvements in question types that require numerical or date answers.  However, this is 

as expected result given that our methodology for Question Contextualization uses part-

of-speech tagging to strip out any word that is not a noun. 

 

6.1.1 Answers to Research Questions 

It was shown that language modeling techniques can be applied to both Candidate 

Document Selection (QA stage 1) and Answer Validation (QA stage 2).  When we 

applied our methodology to Candidate Document Selection, we show a statistically 

significant improvement in recall at of 50 and 100 documents retrieved.  When we 

applied our methodology to Answer Validation, we show improvements in accuracy of 

20% and improvements in MRR of 19%, both of which are comparable with state-of-the-

art textual entailment methods for Answer Validation.  However, unlike textual 

entailment methods, our approach does not require significant training time or training 

data. 
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6.2. Conclusions and Future Work 

The notion of context is very complex and the design of an overarching model for 

context the Question Answering process is not simple.  In this work, we have proposed 

the creation of a Question Context Model using statistical methods based on only un-

structured data sources.  Furthermore, we have not considered the incorporation of 

external knowledge into our Question Context Model in this effort.  While this has 

ensured that our approach is not dependent on domain-specific resources such as 

ontologies, we may want to consider an approach that includes such resources in the 

future for domains in which ontologies or thesauri are available.  Furthermore, the 

development of a holistic Question Context for Answer Extraction and Answer 

Validation may be thought of as an Information Fusion problem.  In our controlled 

environment in the TREC testbed, we were limited to only a single source of data; in the 

realistic environment of the World Wide Web we must consider a more hetero-geneous 

set of information sources – each with potentially different levels of credibility.  In the 

remainder of this section, we highlight four areas which are potential opportunities for 

enhancement of our research in Question Context going forward. 

 Further Development of Models:   Our research has shown that there is a 

correlation between the interpolation parameter (λ) and question category.  We propose 

that an extension of our work would be to quantify the correlation between the 

interpolation parameter and question category, and possibly introduce question category 

as another factor that changes the interpolation parameter on a question by question basis.  

Furthermore, in this work, we established that the “correctness” of the aspects that are 

constructed by PLSA are critical to the success of our models.  Future research may need 
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to consider the methods by which we can quantify “correctness” of an aspect, and if there 

are any alternative methods that produce aspects better suited to question enhancement 

than PLSA.  In addition, more elaborate investigation may be conducted into the PLSA 

parameters set during the course of these experiments.  While we used perplexity in our 

preliminary work to determine the number of PLSA categories and words selected from 

each category, we may want to consider additional metrics to validate our parameter 

selecions. 

Inclusion of Structured Data into Question Context Model: At present, a 

significant amount of information is structured in databases of different formats and 

different semantics. This is true especially in corporate environments, where customer 

records and financial data is stored in large scale databases and data warehouses.  In the 

past, data warehouses have been designed to aid corporate decision making processes, 

and are rich information sources.  Of extreme value would be to have a Question 

Answering system access these data sources, and to be able to fuse the information in 

such sources with textual data. Moreover, even for the textual data, different file formats 

should be considered. Instead of only ASCII-based XML files, textual information could 

also be retrieved from PDF files, postscript files, Word documents, Excel files, 

Powerpoint presentations and even UML (Unified Modeling Language) models. The 

problem is to gather and organize large-scale collections of files in such varied formats.  

Furthermore, sometimes structured information (such as tables) may be contained within 

an unstructured document, which adds to the complexity of this processing. 
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Extension into Genomics and/or Biomedical Domains:  The Genomics and 

Biomedical domains are unique in that they are richly populated with generally accepted 

ontological resources.  When applying our techniques to such domains, it becomes 

necessary to take advantage of resources such as the Gene Onotology and the Unified 

Medical Language System (UMLS) which define a structured vocabulary of terms and 

concepts.  We had originally considered extending our work to the Genomics Domain as 

a part of the present work; however, we found that such an extension represented too 

much of a deviation from the core focus of our effort in developing a statistical model of 

Question Context and Answer Credibility.  A further opportunity with this approach 

would be to use a different baseline system for our experiments.  This would allow us the 

ability to determine what parts of our methodology are truly dependent on the baseline 

Answer Extraction system. 

Data Fusion Approaches to Modeling Question Context:  In a heterogeneous 

information environment, data fusion techniques have been useful for combining data 

from disparate information sources.  Specifically, in domains such as Intelligence 

Analysis for the Department of Defense, data fusion has been used effectively to integrate 

information from disparate information sources.  A particularly interesting problem is 

presented by questions that have answers distributed across different data collections. 

Such questions and their underlying data sources pose research problems that add new 

complexity to QA processing; for such questions, a two-stage QA architecture may not be 

sufficient. Combining information from different data sources is not a trivial problem. 

The answer may be either scattered throughout the collections, but its generation may not 

require any inference; or the answer may be provided only by inferring new information 
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or relations between its subparts. The fusion of information from different documents and 

from different sources often relies on complex inferential processes.  Furthermore, 

variation in reliability of different sources and potentially conflicting information across 

sources adds to the complexity of this processing. 

Complex Question Answering:  To date, this work has focused on Question 

Answering for fact-seeking questions.  A natural extension of this work would be in the 

area of Complex Question Answering which deals with questions that require the use of 

complex reasoning processes and/or return complex answers consisting of more than one 

fact. One approach to Complex QA that has been adopted by many researchers is to 

decompose a complex question into a series of fact-seeking questions and reuse 

techniques developed for answering simple questions.  An extension of this work may 

explore how applicable our techniques are to such decomposed complex questions. 
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APPENDIX A:  AQUAINT DOCUMENT FROM THE NYT DATASET 

The document below is considered to include text that correctly supports the following 

Question/Answer pair from the TREC 2006 dataset: 

 

Target:  Warren Moon 

Question:  What position does Warren Moon play? 

Answer:  Quarterback 

 

The text segment that supports the Question/Answer pair is marked in boldface. 

 

<DOC> 
<DOCNO> NYT20000107.0002 </DOCNO> 
<DOCTYPE> NEWS STORY </DOCTYPE> 
<DATE_TIME> 2000-01-07 00:04 </DATE_TIME> 
<HEADER> 
A9103 Cx1f; ttj-z 
u s BC-FBN-THECHOKE-HNS LR;      01-07 2245 
</HEADER> 
<BODY> 
<SLUG> BC-FBN-THECHOKE-HNS </SLUG> 
   
 (For use by New York Times News Service clients)   
 By JOHN McCLAIN   
 c. 1999, Houston Chronicle   
BUFFALO, N.Y. _ When the Buffalo Bills found out this week they 
would play the Tennessee Titans in the first round of the playoffs, 
the wild-card game rekindled memories of the greatest game in 
franchise history, a game forever etched in the psyche of sports 
fans in Western New York. 
<TEXT> 
<P> 
   The Bills' 41-38 overtime victory over the Houston Oilers is 
famous in New York and infamous in Texas. Buffalo made the biggest 
comeback in NFL history, overcoming a 35-3 third-quarter deficit. 
</P> 
<P> 
   Last week, the NFL announced that game had been voted the 
fifth-most memorable in league history. 
</P> 
<P> 
   The timing was ideal. 
</P> 
<P> 
   The Bills are playing at Adelphia Coliseum on Saturday morning 
in the first game of the weekend. Although the Oilers moved to 
Nashville and became the Titans, the first playoff game between 
these teams since Jan. 3, 1993, has caused local and national media 
to focus on that last playoff game. 
</P> 
<P> 
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   If you were a fan of the Oilers, you will never forget the game 
that became known as ``The Choke.'' 
</P> 
<P> 
   If you are a fan of the Bills, you will never forget the game 
that became known as ``The Comeback.'' 
</P> 
<P> 
   ``That game was a defining moment in the Buffalo Bills' 
history,'' Buffalo receiver Andre Reed said this week. ``It was 
such a special game for everyone who played and everyone who 
watched it.'' 
</P> 
<P> 
   Reed, who became the second-leading receiver in NFL history in 
the last game of the regular season, caught three touchdown passes 
to ignite the comeback, which was not televised in Buffalo because 
the game didn't meet the NFL blackout deadline. 
</P> 
<P> 
   Actual attendance was 75,141, about 4,000 shy of capacity at 
what was then Rich Stadium but has been renamed Ralph Wilson 
Stadium after the team's owner. At halftime, fans headed for the 
exits. In the third quarter, the stadium was only half full. 
</P> 
<P> 
   By the end of the game, every seat was taken and the parking lot 
was overflowing with fans who wanted to be part of a history-making 
experience. 
</P> 
<P> 
   The Bills had lost the last game of the regular season to the 
Oilers in the Astrodome. Quarterback Jim Kelly and outside 
linebacker Cornelius Bennett didn't play because of injuries. Coach 
Marv Levy was replacing Kelly with Frank Reich. 
</P> 
<P> 
   The Oilers, coached by Jack Pardee, led 28-3 at halftime. 
Quarterback Warren Moon threw four touchdown passes, two to Haywood 
Jeffires and one each to Webster Slaughter and Curtis Duncan. 
Buffalo's only score came on Steve Christie's 36-yard field goal. 
</P> 
<P> 
   On the Bills' first series of the third quarter, safety Bubba 
McDowell intercepted Reich and returned it 58 yards for a touchdown 
to make it 35-3. At that point, the Bills' comeback began. And it 
began innocently enough with a one-yard run by Kenneth Davis. 
</P> 
<P> 
   When Buffalo recovered an onside kick the Oilers weren't 
prepared for, the Bills became excited. After Reich threw a 38-yard 
touchdown pass to Don Beebe, the Bills trailed 35-17. The touchdown 
shouldn't have counted, because Beebe ran out of bounds and came 
back in, which should have made him an ineligible receiver, but the 
infraction went uncalled. 
</P> 
<P> 
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   From that point, Murphy's Law took over for the Oilers. They did 
nothing right. Reich threw three touchdown passes to Reed to give 
Buffalo a 38-35 lead late in the game. The Oilers had to drive to 
the Bills' 12 for a chance to win. Moon's passes into the end zone 
were incomplete, and Al Del Greco's 26-yard field goal with 12 
seconds remaining tied the score. 
</P> 
<P> 
   In overtime, cornerback Nate Odomes intercepted Moon, and 
Christie won the game with a 32-yard field goal. 
</P> 
<P> 
   ``Wow! Are all playoff games like this?'' Christie said in the 
dressing room after participating in the first playoff game of his 
career. 
</P> 
<P> 
   No matter where you reside, whether in the Buffalo or Houston 
area, you probably have a story about that incredible afternoon 
that, in Bills lore, was ``Un-Bill-ievable'' as the headline in the 
Buffalo News blared the next day. 
</P> 
<P> 
   Over the last seven years, you've probably heard a thousand 
stories from Oilers fans. Now, here are some stories told from the 
other side _ from members of the Bills organization and their fans. 
</P> 
<P> 
   Steve Tasker, former Bills receiver and special-teams star, 
played in the game. He is now an NFL analyst for CBS. 
</P> 
<P> 
   ``In our part of the country,'' Tasker notes, ``that game is 
like, `Where were you when JFK was shot?' But it's, `Where were you 
when the Bills came back to beat the Oilers?' 
</P> 
<P> 
   ``When they had us down 35-3, we thought it was over. We were 
coming off two Super Bowls in a row, and we had a lot of pride, and 
even though the game was over, we wanted to leave with some dignity 
if we could. 
</P> 
<P> 
   ``When we made it 35-17, I thought, `Well, at least we won't get 
blown out now and look like total idiots.' Then we scored again. 
And again. We went from trying to preserve our dignity to trying to 
be respectful to trying to win. It seemed like one supernatural 
thing after another kept happening. The Oilers had turned off the 
afterburners, and they couldn't turn them back on. 
</P> 
<P> 
   ``I remember looking into the stands in the third quarter and 
seeing so many empty seats. But when we made the comeback, people 
were climbing the fence trying to bust back into the stadium. 
</P> 
<P> 
   ``One thing that was so special about that game _ about our 
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team, really _ is that after games, the whole team would go to Jim 
Kelly's house. Jim has a great house. His basement is like a huge 
bar with pool tables and big-screen TVs. We got to Jim's house and 
watched the game, and what a feeling of euphoria that was. 
</P> 
<P> 
   ``You know, that game was so big in Western New York that it 
became ingrained in the consciousness of everyone. It became 
legendary, woven in the fabric of the Buffalo Bills. It became 
bigger than the Ice Bowl and the Immaculate Reception in our part 
of New York.'' 
</P> 
<P> 
   John Butler is the Bills' general manager. He was the personnel 
director in 1992. 
</P> 
<P> 
   ``I hate to admit it,'' Butler says, ``but I remember thinking, 
`It's been a great year, and they just got us today.' When they 
made it 35-3, I got an empty feeling in the pit of my stomach. I 
started thinking about bringing in some players in the offseason 
and what we were going to do with the roster, things you always 
think about at that time of season. 
</P> 
<P> 
   ``You know, it was a game of emotion like I've never 
experienced. When we scored a couple of touchdowns, I thought how 
proud I was that the guys had the heart to go down fighting. Then, 
when we went ahead, and they were on their last drive with a chance 
to win, I said to myself, `Oh, God. To come this far and not win 
would be so bitter. It'd be too tough to take.' 
</P> 
<P> 
   ``Afterward, it was phenomenal. People were singing in the 
dressing room and celebrating like I'd never seen. I couldn't sleep 
that night. I had no strength left because I was emotionally 
drained. The game was just a blur. 
</P> 
<P> 
   ``The next morning, I had to get on a plane and go to the 
East-West Shrine Game in Palo Alto (Calif.). When I got out there, 
everyone wanted to talk about the game. I tried hard to be 
humble.'' 
</P> 
<P> 
   Thurman Thomas plays running back for the Bills. The Houston 
native started the playoff game but was injured in the first half 
and watched the rest of the game on the sideline. 
</P> 
<P> 
   ``My family back in Houston was watching the game on 
television,'' Thomas remembers. ``When we got so far behind, my 
mother left and went to the store. She was gone and didn't know we 
had come back. When she came home, she asked my dad what the final 
score was, how bad the Oilers had beaten us, and when he told her 
what had happened, she didn't believe it at first. When they 
convinced her it was true, she started crying. 



203 

</P> 
<P> 
   ``When I called home that night, she said, `Oh, baby, I'm sorry. 
I'm sorry I left.' I told her it was OK. 
</P> 
<P> 
   ``To tell you the truth, I didn't think there was any way we 
could come back and win. I was on the bench thinking about when I'd 
be leaving Buffalo and coming home to Houston and how much grief 
I'd have to take from my family and friends. 
</P> 
<P> 
   ``I still can't believe we actually won. Sometimes it just 
doesn't seem real. People seem to forget that we had to win at 
Pittsburgh and Miami to go to our third straight Super Bowl. After 
we lost the Super Bowl (52-17 to Dallas), I went home to Houston a 
couple of days later. 
</P> 
<P> 
   ``I was prepared for everyone to give me a hard time about us 
losing another Super Bowl, but the subject hardly came up. All they 
wanted to talk about was the Oilers game. That was fine with me. I 
preferred to talk about that game instead of the Super Bowl.'' 
</P> 
<P> 
   Scott Berchtold is the Bills' vice president of communications. 
He was the director of media relations in 1992. 
</P> 
<P> 
   ``I've heard so many stories over the years,'' Berchtold says. 
``I think 250,000 people will swear they were at that game. I've 
heard so many stories from people who left. One guy even said he 
left in the second quarter and drove 90 miles home, then turned 
around and sped back in time for overtime. 
</P> 
<P> 
   ``One thing that really stands out for me is that at halftime 
all the Houston writers were getting on the telephone and making 
reservations for the next game in Pittsburgh. But I remember 
thinking that we still had a chance. I even told one guy that, and 
he looked at me like I was crazy. 
</P> 
<P> 
   ``It was 28-3 at halftime. I asked one of my interns to look up 
the biggest comeback in playoff history. When they scored to make 
it 35-3, I started thinking about things like the end-of-season 
interviews the next day. When we scored and got the onside kick and 
scored again, the intern told me that if we won, it would be the 
biggest comeback in NFL history, not just NFL playoff history. I 
didn't tell anyone for a while. I didn't want to jinx us. 
</P> 
<P> 
   ``When I think back, I can still see everything going on in the 
press box. When we'd score, there'd be a collective roar from the 
media on the Buffalo side of the press box. It wasn't a cheer, just 
something like a disbelieving roar. At the same time, there'd be a 
collective groan on the Houston side. We had to announce three 
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times the NFL rule that there was no cheering in the press box. 
After a while, we just gave up. 
</P> 
<P> 
   ``During practice last week, the televisions in the dressing 
room were showing parts of the comeback, because it had been voted 
the fifth-most memorable game in NFL history. The players just 
stopped and watched it. The young guys all knew that game. They 
started talking with (defensive end) Bruce (Smith) and Thurman and 
Andre about it. Rather than their teammates, the young guys were 
looking at them as heroes again. 
</P> 
<P> 
   ``Another thing I remember is that at halftime, our backup 
quarterback, Gale Gilbert, reminded Frank Reich that he had 
engineered the biggest comeback in college history (for Maryland 
vs. Miami in 1984). Frank kind of nodded, like, `Yeah, right.' 
</P> 
<P> 
   ``During the comeback, we had a fourth-down play. Marv had 
wanted to kick the field goal, but Frank talked him out of it on 
the sideline. Frank convinced Marv that he had a play that would 
work. It was a pass to Andre down the middle. Marv changed his 
mind. And it did work. Not only did we get a first down, but Andre 
caught the pass down the middle for the touchdown. 
</P> 
<P> 
   ``After the game, Frank was at his locker room doing more 
interviews. I remember him telling the media that, other than 
getting married and having his children, it was the greatest day in 
his life. And I remember Kelly standing behind the camera trying to 
break him up by putting his finger down his throat as if Frank was 
making Jim gag with those kinds of remarks. 
</P> 
<P> 
   ``After the game, Charles Osgood wrote a poem about the comeback 
and read it on CBS Radio. I still have a tape of it. It was about 
never giving up in life. It was almost like a Casey at the Bat for 
football. He used the Buffalo Bills as an example of guys that 
refused to give up against tremendous odds.'' 
</P> 
<P> 
   Vic Carucci is a writer for NFL Insider. He was the Bills beat 
man for the Buffalo News in 1992. 
</P> 
<P> 
   ``When the Oilers led 35-3, I was talking to my editor about 
plans for Marv's postseason press conference the next day,'' 
Carucci says. ``We had to worry about the game, plus our 
end-of-the-season wrapup. When you're covering a blowout, you don't 
tend to take notes as thoroughly as usual, and when the Bills 
started scoring, I really had to scramble. 
</P> 
<P> 
   ``When the Bills started coming back, I was awestruck. When they 
looked like they might actually have a chance to win, we had to 
scramble. We had to change our coverage. Every time the Bills did 
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something right and the Oilers did something wrong, I had to blink 
my eyes to make sure it was really happening. 
</P> 
<P> 
   ``We didn't really get ourselves together until after we came 
back upstairs and had a meeting to see what we had and how we were 
going to use it. People remember our headline _ `Un-Bill-ievable.' 
</P> 
<P> 
   ``I've heard so many interesting stories. One friend left, and 
when he got to his subdivision, he saw cars turning around. He 
thought there was a wreck. He was so mad at the Bills, he didn't 
have the radio on. He turned it on to try to find out about the 
accident, and every station was talking about the comeback. He said 
he turned around immediately and came right back. I know a lot of 
people who did the same thing but just won't admit it.'' 
</P> 
<P> 
   $$$ 
</P> 
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