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Abstract.
Information extraction from social media content has only recently become an

active research topic, following early experiments which showed this genre to be
extremely challenging for state-of-the-art algorithms. Unlike carefully authored
news text and other longer content, social media content poses a number of new
challenges, due to shortness, noise, strong contextual anchoring, and highly dy-
namic nature.

This chapter provides a thorough analysis of the problems and describes the most
recent GATE algorithms, specifically developed for extracting information from so-
cial media content. Comparisons against other state-of-the-art research on this topic
are also made. These new GATE components have now been bundled together, to
form the new TwitIE information extraction pipeline, distributed as a GATE plugin.

Keywords. Information Extraction, GATE, social media

1. Introduction

In recent years, social media – and microblogging in particular – have established them-
selves as high-value, high-volume content, which organisations increasingly wish to
analyse automatically. For instance, the widely popular Twitter microblogging platform
has around 288 million active users, posting over 500 million tweets a day,3 and has the
fastest growing network in terms of active usage.4

Researchers have therefore started to study the problem of mining social media con-
tent automatically. The focus of this chapter is on information extraction, but other hotly
researched topics include opinion mining [1], summarisation [2], and visual analytics and
user and community modelling [3]. It is relevant in many application contexts, including
knowledge management, competitor intelligence, customer relation management, eBusi-
ness, eScience, eHealth, and eGovernment.

Information extraction from social media content has only recently become an ac-
tive research topic, following early experiments which showed this genre to be extremely
challenging for state-of-the-art algorithms. For instance, named entity recognition meth-
ods typically have 85-90% accuracy on longer texts, but 30-50% on tweets [4,5].
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The aim of this chapter is to provide a thorough analysis of the problems and to de-
scribe the most recent GATE algorithms, specifically developed for extracting informa-
tion from social media content. Comparisons against other state-of-the-art research on
this topic are also made. These new GATE components have now been bundled together,
to form the new TwitIE IE pipeline, made available as a GATE plugin.

As the chapter progresses, the information extraction tasks and algorithms be-
come progressively more complex and, consequently, more error-prone. For instance, on
longer, well-formed content, tokenisation and part of speech (POS) tagging are typically
performed with 95-98% accuracy, entity recognition between 90-95%, and even less for
parsing. Genre adaptation is also a major issue, and again performance on tweets varies
more widely as the tasks become more complex.

Consequently, there is a trade-off between the sophistication of the linguistic analy-
sis and its accuracy, especially on unseen, noisier types of text. As a result, it is advisable,
as an integral part of system development, to carry out rigorous quantitative evaluation
against a gold standard dataset. It is through such experiments that it is possible to es-
tablish the usefulness of each of the text mining processing steps. GATE offers a wide
range of evaluation tools described in detail in [6] and [7].

On large datasets, computational complexity and implementation efficiency would
also need to be considered. To address this challenge, the GATE family has been ex-
tended recently with GATECloud (see Section 3.2 for details).

The rest of the chapter is structured as follows. Section 2 discusses the character-
istics of social media content, which make it particularly challenging for state-of-the-
art text mining algorithms. Next Section 3 introduces briefly the GATE family of text
mining tools. Since the focus of this chapter is primarily on Information Extraction (IE)
methods, Section 4 provides a brief overview of IE and differentiates it from information
retrieval. Next Section 5 discusses in details IE from social media and introduces the
TwitIE pipeline of reusable GATE components for extracting information from social
media content. The chapter concludes with a brief discussion on outstanding challenges
and future work.

2. Social Media Streams: Characteristics, Challenges and Opportunities

Social media sites allow users to connect with each other for the purpose of sharing con-
tent (e.g. web links, photos, videos), experiences, professional information, and online
socialising with friends. Users create posts or status updates and social media sites circu-
late these to the user’s social network. The key difference from traditional web pages is
that users are not just passive information consumers, but many are also prolific content
creators.

Social media can be categorised on a spectrum, based on the type of connection
between users, how the information is shared, and how users interact with the media
streams:

• Interest-graph media [8], such as Twitter, encourage users to form connections
with others based on shared interests, regardless of whether they know the other
person in real life. Connections do not always need to be reciprocated. Shared
information comes in the form of a stream of messages in reverse chronological
order.



• Social networking sites (SNS) encourage users to connect with people they have
real-life relationships with. Facebook, for example, provides a way for people to
share information, as well as comment on each other’s posts. Typically, short con-
tributions are shared, outlining current events in users’ lives or linking to some-
thing on the internet that users think their friends might enjoy. These status up-
dates are combined into a time-ordered stream for each user to read.

• Professional Networking Services (PNS), such as LinkedIn, aim to provide an
introductions service in the context of work, where connecting to a person implies
that you vouch for that person to a certain extent, and would recommend them as
a work contact for others. Typically, professional information is shared and PNS
tend to attract older professionals [9].

• Content sharing and discussion services, such as blogs, video sharing (e.g.
YouTube, Vimeo), slide sharing (e.g. SlideShare), and user discussion/review fo-
rums (e.g. CNET). Blogs usually contain longer contributions. Readers might
comment on these contributions, and some blog sites create a time stream of blog
articles for followers to read. Many blog sites also advertise automatically new
blog posts through their users’ Facebook and Twitter accounts.

These different kinds of social media, coupled with their complex characteristics,
make text mining extremely challenging. State-of-the-art natural language processing
algorithms have been developed primarily on news articles and other carefully written,
long web content [10]. In contrast, most social media streams (e.g. tweets, Facebook
messages) are strongly inter-connected, temporal, noisy, short, and full of slang, leading
to severely degraded results5.

These challenging social media characteristics are also opportunities for the devel-
opment of new text mining approaches, which are better suited to media streams:

Short messages (microtexts): Twitter and most Facebook messages are very short (140
characters for tweets). Many semantic-based methods reviewed below supplement
these with extra information and context coming from embedded URLs and hash-
tags6. For instance, Abel et al [13] augment tweets by linking them to contempo-
raneous news articles, whereas Mendes et al exploit online hashtag glossaries to
augment tweets [14].

Noisy content: social media content often has unusual spelling (e.g. 2moro), irregular
capitalisation (e.g. all capital or all lowercase letters), emoticons (e.g. :-P), and
idiosyncratic abbreviations (e.g. ROFL, ZOMG). Spelling and capitalisation nor-
malisation methods have been developed [15], coupled with studies of location-
based linguistic variations in shortening styles in microtexts [16]. Emoticons are
used as strong sentiment indicators in opinion mining algorithms (see e.g. [17]).

Conversational : this content has very conversational linguistic style, including ubiqui-
tous use of slang and swear words. Moreover, microblog services like Twitter hide
conversations amongst the stream of tweets and to fully interpret the meaning of a
reply tweet it is often necessary to process it together with the preceeding tweets

5For instance, named entity recognition methods typically have 85-90% accuracy on news but only 50% on
tweets [11,4].

6A recently study of 1.1 million tweets has found that 26% of English tweets contain a URL, 16.6% – a
hashtag, and 54.8% contain a user name mention [12].



in the conversation. In many cases, however, detecting conversational threads au-
tomatically is far from trivial, since threads can branch and more participants join.

Temporal: in addition to linguistic analysis, social media content lends itself to analysis
along temporal lines, which is a relatively under-researched problem. Addressing
the temporal dimension of social media is a pre-requisite for much-needed models
of conflicting and consensual information, as well as for modelling change in user
interests. Moreover, temporal modelling can be combined with opinion mining, to
examine the volatility of attitudes towards topics over time.

Social context is crucial for the correct interpretation of social media content. Semantic-
based methods need to make use of social context (e.g. who is the user connected
to, how frequently they interact), in order to derive automatically semantic models
of social networks, measure user authority, cluster similar users into groups, as
well as model trust and strength of connection.

User-generated: since users produce, as well as consume social media content, there is
a rich source of explicit and implicit information about the user, e.g. demograph-
ics (gender, location, age, etc.), interests, opinions. The challenge here is that in
some cases, user-generated content is relatively small, so corpus-based statistical
methods cannot be applied successfully.

Multilingual: Social media content is strongly multilingual. For instance, less than 50%
of tweets are in English, with Japanese, Spanish, Portuguese, and German also fea-
turing prominently [12]. Unfortunately, semantic technology methods have so far
mostly focused on English, while low-overhead adaptation to new languages still
remains an open issue. Automatic language identification [12,18] is an important
first step, allowing applications to first separate social media in language clusters,
which can then be processed using different algorithms.

3. The GATE Family of Text Mining Tools: An Overview

The GATE family of open-source text mining tools has grown over the years to in-
clude a desktop application for researchers developing new algorithms, a collaborative
workflow-based web application, an annotation indexing and retrieval server, a Java li-
brary, an architecture and a process. To summarise, GATE comprises:

• GATE Developer: an integrated development environment (IDE) for language
processing components, which is bundled with a widely used information extrac-
tion [6] system and a diverse set of several hundred other plugins [19];

• GATE Cloud [20], a cloud computing solution for hosted large-scale text pro-
cessing;

• GATE Teamware [21]: a collaborative environment for large-scale manual
semantic annotation projects built around a workflow engine and a heavily-
optimised backend service infrastructure;

• a multi-paradigm index server, GATE Mímir [22], which can be used to index
and search over text, annotations, semantic schemas (ontologies), and semantic
meta-data (instances), allowing queries that arbitrarily mix full-text, structural,
linguistic and semantic constraints and that can scale to terabytes of text;



• a framework, GATE Embedded: an object library optimised for inclusion in di-
verse applications giving access to all the services used by GATE Developer and
others;

• an architecture: a high-level organisational picture of language processing soft-
ware composition;

• a process for the creation of robust and maintainable NLP applications;

Note that GATE Developer and Embedded are bundled together, and in early distri-
butions were referred to just as ‘GATE’.

3.1. GATE Developer

GATE Developer is a specialist Integrated Development Environment (IDE) for language
engineering R&D. It is analogous to systems like Eclipse or Netbeans for programmers,
or Mathematica or SPSS for mathematics or statistics work. The system performs tasks
such as:

• Visualisation and editing of domain-specific data structures associated with text:
annotation graphs, ontologies, terminologies, syntax trees, etc.

• Constructing applications from sets of components (or plugins).
• Measurement, evaluation and benchmarking of automatic systems relative to gold

standard data produced by human beings, or to previous runs of variants of ex-
perimental setups.

A sophisticated graphical user interface provides access to the models of the GATE
architecture and particular instantiations of that architecture.

Figure 1. The GATE Developer Interface



Figure 1 displays a tweet, where the tweet text and JSON tweet metadata are im-
ported as document content. The central pane shows a version of the source text from
which formatting markup has been removed (and converted into arcs in an annotation
graph associated with the document). The left pane details resources loaded in the sys-
tem, including any application being used to annotate the text (e.g. TwitIE - see below)
and the documents under analysis. The right pane lists the annotation types that exist
in the document. Annotations are organised in annotation sets and here the “Original
markups” set is shown, where the JSON fields are used to create different annotations.
For example, a description annotation is created, which covers the text from the user
profile (“The latest stories...”); a text annotation covers the tweet text (“Police sorry
for...”), etc. The central pane highlights the selected annotation types and there is also an
optional annotations list table underneath, which shows more details on each annotation,
including its start and end character offset, any features contained, etc.

3.2. GATE Embedded

Underlying GATE Developer (and most of the rest of the GATE family tools) is an object-
oriented Java framework called GATE Embedded. Some of the architectural principles
which we adopted when developing the framework are as follows:

• Neutrality. The framework tries hard to be non-prescriptive and theory neutral.
This is a strength because it means that no approach to language processing that
users favour is excluded, but it is also a weakness because more restricted and
specialised tools can capture more abstractions about their target domains, hence:

• Re-use. We minimise the impact of that weakness by emphasising re-use and in-
teroperation with related systems, and avoiding reimplementation wherever pos-
sible. Thus GATE provides diverse XML support, integration with the OWLIM
semantic repository [23], the Weka machine learning library [24], the Lingpipe7

and OpenNLP8 language analysis pipelines, the SVM Lite library [25], and many
others (see [7]).

• Componentisation. Almost everything in GATE is modelled as a component, and
the various component sets are all user-extendable. This means that all of the
functions of the system can be swapped out, extended or replaced by users and
developers with specific needs.

• Multiple usage modes. Almost all operations are available both from API (GATE
Embedded) and UI (GATE Developer). A common process is to develop and test
using the IDE and then embed in the target environment using the Java library. In
both cases exactly the same underlying framework is in operation.

The set of plugins that are integrated with GATE is called CREOLE, a Collection
of REusable Objects for Language Engineering. Components are defined as Java Beans
bundled with XML configuration, and the overheads imposed by the model are very
small (the minimal component comprises a few lines of Java code plus a few lines of
XML). Components can be packaged in the same way as other Java libraries and can be
loaded over the network via a URL.

7http://alias-i.com/lingpipe/
8http://opennlp.apache.org/



GATE Embedded encapsulates a number of modular APIs for text processing, which
cover functions including:

• persistence, visualisation and editing
• a finite state transduction language (JAPE, a Java Annotation Patterns Engine

[26])
• extraction of training instances for machine learning (ML – methods for auto-

mated abstraction of pattern recognition models from data, see e.g. [27])
• pluggable ML implementations (e.g. Weka, [28], support vector machines [25],

etc.)
• components for language analysis, e.g. parsers, taggers and stemmers for various

languages
• a very widely used information extraction system (ANNIE) which has been eval-

uated in comparative events including MUC, TREC, ACE, DUC, Pascal, NTCIR,
etc. [29,30,31,32,33]

• indexing and search tools (including Lucene, Google and Yahoo plugins)
• a simple API for RDF, OWL and Linked Data

The modularity of the library and the low level of commitment imposed on its clients
has proven flexible enough to prosper for more than a decade since the release of version
2 (the first Java version).

3.3. GATE Cloud

GATECloud.net [34] is a web-based platform which deploys GATE analysis pipelines
and GATE server products on Amazon EC2 (Elastic Compute Cloud – a popular cloud
computing platform). GATE annotation pipelines provide a PaaS (Platform as a Service
[35]) arrangement: software produced using GATE Developer/Embedded can be trivially
scaled up to large data volumes. In this way GATE Teamware and Mímir on the cloud
provide a SaaS (Software as a Service) arrangement where responsibility for installation
and administration are removed from the end user.

GATE Cloud is based on a parallel execution engine of automatic annotation pro-
cesses (using pooling and model sharing to minimise the load on individual nodes) and
distributed execution of the parallel engine [34]. Its characteristics include:

• scalability: auto-scaling of processor swarms dependent on loading;
• flexibility: user-visible parameters configure system behaviour, select the GATE

application being executed, the input protocol used for reading documents, the
output protocol used for exporting the resulting annotations, and so on;

• robustness: jobs run unattended over large data sets using a parallelisation system
that has been extensively tested and profiled.

In general, making optimal use of virtual IaaS infrastructures for data-intensive NLP
again comes with a significant overhead, e.g. having to learn the intricacies of Amazon’s
APIs for the elastic compute cloud and simple storage services. An added complication
is that not all NLP algorithms are actually implementable in the MapReduce paradigm,
e.g. those requiring a shared global state.

Therefore, the GATECloud platform was designed as an open cloud platform that
can run existing NLP algorithms on large datasets, as well as algorithms already adapted



to Hadoop. Cloud infrastructural issues are dealt with by the GATECloud platform, com-
pletely transparently to the user, including load balancing, efficient data upload and stor-
age, deployment on the virtual machines, security, fault tolerance, and resource usage.

4. Information Extraction: An Overview

Information Extraction (IE) is a technology based on analysing natural language in order
to extract snippets of information. For example, when extracting information about com-
panies, key information to be identified would be the company address, contact phone,
fax numbers, and e-mail address, products and services, members of the board of direc-
tors and so on.

The process takes texts (and sometimes speech) as input and produces fixed-format
data as output. This data may be used directly for display to users, or may be stored
in a database or spreadsheet for later analysis, or may be used for indexing purposes in
Information Retrieval (IR) applications such as Internet search engines like Google.

IE is quite different from IR:

• an IR system finds relevant texts and presents them to the user;
• an IE application analyses texts and presents only the specific information from

them that the user is interested in.

The main tasks carried out during information extraction are:

• named entity recognition, which consists on the identification and classification
of different types of names in text;

• coreference resolution, which is the task of deciding if two linguistic expressions
refer to the same entity in the discourse;

• and relation extraction, which identifies relations between entities in text.

Information extraction usually employs the following natural language process-
ing components: Part-Of-Speech (POS) taggers, morphological analyser, named entity
recognisers, full (or shallow) parsing, and semantic interpretation. Generic versions of
these linguistic processors are available in GATE [6]), although some require adaptation
to social media.

There are two main classes of approaches to information extraction:

1. rule-based systems which are built by language engineers, who design lexicons
and rules for extraction; and

2. machine learning systems which are trained to perform one or more of the IE
tasks. Learning systems are given either an annotated training corpus (i.e., super-
vised machine learning) or unannotated corpus together with a small number of
seed examples (i.e., unsupervised or lightly supervised methods).

The advantages of rule-based approaches are that they do not require training data
to create (although a small gold standard is needed for evaluation) and harness human
intuition and domain knowledge. Depending on the lexical and syntactic regularity of the
target domain, rule creation ranges from extremely fast (when few, clear patterns exist)
to rather time-consuming (if more ambiguities are present). Depending on the system
design, some changes in requirements may be hard to accommodate. Since rule-based



systems tend to require at least basic language processing skills, they are sometimes
perceived as more expensive to create.

In comparison, machine learning approaches typically require at least some human-
annotated training data, in order to reach good accuracy. While the cost per individual an-
notator is lower than the cost of language engineers, given the size of data needed, often
more than one or two annotators are required. This raises the problem of inter-annotator
agreement (or consistency), since the accuracy of the learnt models can be affected sig-
nificantly by noisy, contradictory training data. However, getting training annotators to
agree on their labels is again dependent on the complexity of the target annotations and
could in itself be rather time-consuming. Another potential problem could arise if the se-
mantic annotation requirements change after the training data has been annotated, since
this may require substantial re-annotation.

To summarise, both types of approaches have advantages and drawbacks and the
choice of which one is more appropriate for a given application depends on the target
domain, the complexity of the semantic annotations (including the size of the ontology),
and the availability of trained human annotators and/or language engineers. Last but not
least, there is no reason why one cannot have a hybrid approach, which uses both rules
and machine learning.

5. IE from Social Media with GATE

GATE comes pre-packaged with the ANNIE general purpose IE pipeline. ANNIE con-
sists of the following main processing resources: tokeniser, sentence splitter, POS tagger,
gazetteer lists, finite state transducer (based on GATE’s built-in regular expressions over
annotations language [6]), orthomatcher and coreference resolver. The resources com-
municate via GATE’s annotation API [6], which is a directed graph of arcs bearing arbi-
trary feature/value data, and nodes rooting this data into document content (in this case
text).

The ANNIE components can be used individually or coupled together with new
modules in order to create new applications. For example, we reuse the ANNIE sentence
splitter and name gazetteers unmodified on social media content, but re-train and adapt
other components to the specifics of this genre.

Adaptation to the specifics of the social media genre is required, in order to ad-
dress the genre-specific challenges discussed in Section 2. General-purpose linguistic
tools such as POS taggers and entity recognisers do particularly badly on such texts (see
Sections 5.4 and 5.6 respectively).

Therefore, we have developed TwitIE – a customisation of ANNIE, specific to social
media content, which we have currently tested most extensively on microblog messages.
The latter content is both readily available as a large public stream and also is the most
challenging to process with generic IE tools, due to the shortness, noisy nature, and
prevalence of slang and Twitter-specific conventions.

Figure 2 shows the TwitIE pipeline and its components. TwitIE is distributed as a
plugin in GATE, which needs to be loaded for these processing resources to appear in
GATE Developer. Components reused from ANNIE without any modification are shown
in blue, whereas the red ones are new and specific to social media.

The first step is language identification, which is discussed next (Section 5.1), fol-
lowed by the TwitIE tokeniser (Section 5.2).



Figure 2. The TwitIE Information Extraction Pipeline

The gazetteer consists of lists such as cities, organisations, days of the week, etc.
It not only consists of entities, but also of names of useful indicators, such as typical
company designators (e.g. ‘Ltd.’), titles, etc. The gazetteer lists are compiled into finite
state machines, which can match text tokens. TwitIE reuses the ANNIE gazetteer lists, at
present, without any modification.

The sentence splitter is a cascade of finite-state transducers which segments text
into sentences. This module is required for the POS tagger. Again, at present, the ANNIE
sentence splitter is reused without modification, although when processing tweets, it is
also possible to just use the text of the tweet as one sentence, without further analysis.

The normaliser, the adapted POS tagger, and named entity recognition are discussed
in detail in Sections 5.3, 5.4, and 5.6 respectively.

We have also included a section on stemming and morphological analysis in GATE
(Section 5.5), since these can be useful in some applications. By default they are not
included in the TwitIE pipeline, but can easily be added, if required.

5.1. Language Identification

It is critical to determine the language in which a document is written, in order to know
which tools to apply. The language identification task is thus typically performed before
other linguistic processing, having as its goal is to output a language suggestion given
some unprocessed text. We consider two types of approach: n-gram frequency-based and
n-gram information gain-based.

Both approaches include an implicit tokenisation step, though this is speculative and
does not inform later processes in the GATE TwitIE pipeline. TextCat [36] relies on n-
gram frequency models to discriminate between languages, relying on token sequences



System Overall accuracy English Dutch French German Spanish
TextCat 89.5% 88.4% 90.2% 86.2% 94.6% 88.0%
langid 89.5% 92.5% 89.1% 89.4% 94.3% 83.0%
TextCat (in-genre) 97.4% 99.4% 97.6% 95.2% 98.6% 96.2%
langid (in-genre) 87.7% 88.7% 88.8% 88.0% 92.5% 81.6%

Table 1. Language classification accuracy on the ILPS dataset for systems before and after adaptation to the
microblog genre.

that are strong language differentiators. The information gain-based langid.py [37] uses
n-grams to learn a multinomial event model, with a feature selection process designed to
cope with variations of expression between text domains. They have both been adapted
for microblog text, using human-annotated data from Twitter. The TextCat adaptation
[12] works on a limited set of languages; the langid.py adaptation [38] – on 97.

We evaluated four system runs on the ILPS TextCat microblog evaluation dataset9.
Results are given in Table 1, with the Twitter-specific versions marked “-twitter”. It
should be noted that the adapted version of TextCat has a slightly easier task than
langid.py does, since it expects only five language choices, whereas the adapted langid.py
is choosing labels from a set of 97 languages. The latter assigned a language outside the
five available to 6.3% of tweets in the evaluation set. Why the adapted langid.py per-
formed worse than the generic version is not clear; the results are quite close for some
languages, and so if an approximate 6% improvement could be made in these cases, the
Twitter-adapted version would be better.

The results below demonstrate that language identification is harder on tweets than
longer texts. Nevertheless, it has reasonable accuracy, which can be used to inform
choices of later tools, without introducing too many errors.

Given the above much higher results, only the adapted TextCat is distributed as part
of the GATE TwitIE plugin. Due to the shortness of tweets, it makes the assumption that
each tweet is written in only one language. The choice of languages used for categoriza-
tion is specified through a cofiguration file, supplied as an initialisation parameter.

Figure 3 shows three tweets – one English, one German, and one French. TwitIE
TextCat was used to assign automatically the lang feature to the tweet text (denoted by
the Tweet annotation).

Given a collection of tweets in a new language, it is possible to train TwitIE TextCat
to support that new language as well. This is done by using the Fingerprint Generation
PR, included in the Language_Identification GATE Plugin [7]. It builds a new
ïňĄngerprint from a corpus of documents.

Reliable tweet language identification allows us to only process those tweets written
in English with the TwitIE English POS tagger and named entity recogniser. GATE also
provides POS tagging and named entity recognition in French and German, so it is pos-
sible to process tweets differently, dependent upon the language they are written in. This
is achieved by making the execution of these components conditional on the respective
tweet being in English, German, or French, by using a Conditional Corpus Pipeline [7].

9http://ilps.science.uva.nl/resources/twitterlid



Figure 3. Example Tweets Annotated by TextCat

5.2. Tokenisation

Tokenisation is the task of splitting the input text into very simple units, called tokens.
Tokenisation is a required step in any linguistic processing application, since more com-
plex algorithms typically work on tokens as their input, rather than using the raw text.
Consequently, it is important to use a high-quality tokeniser, as errors are likely to affect
the results of all subsequent NLP algorithms.

Different languages require different tokenisers, with some easier than others [39].
Even punctuation use can differ between languages for the microblog genre, in which
“smileys” (comprised of extended sequences of punctuation symbols) are prevalent.

Commonly distinguished types of tokens are numbers, symbols (e.g., $, %), punc-
tuation and words of different kinds, e.g., uppercase, lowercase, mixed case. Tokenis-
ing well-written text is generally reliable and reusable, since it tends to be domain-
independent. One widely used tokeniser for English is bundled in the open-source AN-
NIE system in GATE [6].

However, such general purpose tokenisers need to be adapted to work correctly on
social media, in order to handle specific tokens like URLs, hashtags (e.g. #nlproc), user
mentions in microblogs (e.g. @GateAcUk), special abbreviations (e.g. RT, ROFL), and
emoticons. A study of 1.1 million tweets established that 26% of English tweets have a
URL, 16.6% – a hashtag, and 54.8% – a user name mention [12]. Therefore, tokenising
these accurately is very important.

To take one tweet as an example:

#WiredBizCon #nike vp said when @Apple saw what
http://nikeplus.com did, #SteveJobs was like wow I didn’t
expect this at all.

One option is to tokenise on white space alone, but this does not work that well for hash-
tags and @mentions. In our example, if we have #nike and @Apple as one token each,
this will make their recognition as company names harder, since the named entity recog-
nition algorithm will need to look at sub-token level. Similarly, tokenising on white space



Approach Precision Recall F1
ANNIE Tokeniser 90% 72% 80%
TwitIE Tokeniser 98% 94% 96%

Table 2. Tokeniser performance on sample microblog text

and punctuation characters does not work well, since in that case URLs get separated in
more than one token (e.g. http, nikeplus), as are emoticons and email addresses.

Therefore, the TwitIE tokeniser in GATE is an adaptation of the ANNIE English
tokeniser. It follows Ritter’s tokenisation scheme [4]. More specifically, it treats abbre-
viations (e.g. RT, ROFL) and URLs as one token each. Hashtags and user mentions are
two tokens (i.e., # and nike in the above example) plus a separate annotation HashTag
covering both. Capitalisation is preserved, but an orthography feature is added: all caps,
lowercase, mixCase. Lowercasing and emoticons are optionally done in separate mod-
ules, since they are not always needed. Consequently, tokenisation is faster and more
generic, as well as more tailored to the needs of named entity recognition.

In terms of implementation, the TwitIE Tokeniser relies on a set of regular expres-
sion rules which are then compiled into a finite-state machine. This differs from most
other tokenisers in that it maximises efficiency by doing only very light processing, and
enabling greater flexibility by placing the burden of deeper processing on the grammar
rules, which are more adaptable. For example, there is a specialised set of rules for recog-
nising the hashtags and user mentions.

In order to evaluate the benefit from making adaptations to microblog and social
media content, we compare the TwitIE tokeniser against the general purpose ANNIE
tokeniser in GATE [6] on Ritter’s tweet dataset [4]. Performance was measured in terms
of precision and recall, as well as F1 measure, and is given in Table 2.

The original tokeniser performed poorly, reaching an F1 of only 80% (near 100%
is typical), and with many errors around punctuation and twitter-specific entities. This
is too weak to accurately inform later tasks. Smileys cause some trouble for tokenisers,
many of which do not occur in the training data. Orthographic errors are also rife in
this genre, an analysis of which can be found in [40]. Aside from smileys and typos,
the low performance of a conventional tokeniser such as this is mostly due to differing
tokenisation rules regarding usernames and Twitter-specific content.

5.3. Normalisation

Noisy environments such as microblog text pose challenges to existing tools, being rich
in previously unseen tokens, elision of words, and unusual grammar. Normalisation is
commonly proposed as a solution for overcoming or reducing linguistic noise [41]. The
task is generally approached in two stages: first, the identification of orthographic errors
in an input discourse, and second, the correction of these errors.

Example 5.3.1 shows an original microblog message, including a variety of errors,
and the post-normalisation repaired version.

Example 5.3.1 Source text: @DORSEY33 lol aw . i thought u was talkin bout another
time . nd i dnt see u either !

Normalised text: @DORSEY33 lol aww . I thought you was talking about another
time . And I didn’t see you either !



As can be seen, not all the errors can be corrected (was ought to be were, for ex-
ample) and some genre-specific slang remains – thought not in a particularly ambiguous
sense or grammatically crucial place. Note the frequent shortening of words in messages
entered by users, possibly attributable to both their effort to minimise the energy cost
of communication and also out of habit of fitting within the tight message length limits
typical of the genre.

Normalisation approaches are typically based on a correction list, edit-distance
based, cluster-based, or a mixture of these, with hybrid approaches common. They often
include a dictionary of known correctly-spelled terms, and refer to in-vocabulary (IV)
and out-of-vocabulary (OOV) terms with respect to this dictionary.

One common source of errors on social media content is variation of spelling of
proper names, which in turn impacts the accuracy of named-entity recognition. There-
fore, resources have been developed to capture the many variations on spellings seen for
given entities. For example, JRC-Names [42] is a list-based collection of name variations
for many entities, coupled with an algorithm for matching target words to a given entity.
An integration of JRC-Names into GATE is currently ongoing.

Dictionary-based approaches can be used to repair errors on all kinds of words, not
just named entities; for example, Han et al. [43] construct a general-purpose spelling
correction dictionary for microblogs. This achieves state-of-the-art performance on both
the detection of mis-spelled words and also applying the right correction.

The TwitIE Normaliser is currently a combination of a generic spelling-correction
dictionary and a spelling correction dictionary, specific to social media. The latter con-
tains entries such as “2moro” and “brb”, similar to Han et al. [43]. Figure 4 shows an
example output from normalisation, where the abbreviation “Govt” has been normalised
to government.

Instead of a fixed list of variations, it is also possible to use a heuristic to suggest
correct spellings. Both text edit distance and phonetic distance can be used to find candi-
date matches for words identified as mis-spelled. Han and Baldwin [15] achieved good
corrections in many cases by using a combination of Levenshtein distance and double-
metaphone distance between known words and words identified as incorrectly entered.
We experimented also with this normalisation approach in TwitIE, with mixed success.
Namely, this method has higher recall – more wrong words can be corrected by the re-
source – but lower precision, in that some corrections are wrong. A detailed error analysis
and evaluation of dictionary-based versus heuristic normalisation is presented in [44].

5.4. Part of Speech Tagging

Part-of-Speech (POS) tagging is concerned with tagging words with their part of speech,
by taking into account the word itself, as well as the context in which it appears. A key
part of this task is the tagset used and the distinctions that it makes. The main categories
are verb, noun, adjective, adverb, preposition, etc. However, tagsets tend to be much
more specific, e.g. distinguishing between singular and plural nouns. One commonly
used tagset is the Penn Treebank one (referred to as PTB) [45].

In terms of approaches, researchers have achieved excellent results with Hidden
Markov models, rule-based approaches, maximum entropy, and many other methods.
GATE’s English POS tagger [46] is a modified version of the Brill transformational rule-
based tagger [47], which produces a part-of-speech tag as an annotation on each word



Figure 4. Comparing POS Tagger Output: A Normalisation Example

or symbol, using the Penn treebank tagset. The tagger uses a default lexicon and ruleset
(the result of training on a large corpus taken from the Wall Street Journal). Both of these
can be modified manually if necessary.

Later, Toutanova et al. [48] introduced the Stanford POS tagger, trained on newswire
texts. It has sophisticated feature generation, especially for unknown words, and a highly
configurable re-trainable engine. This is generally thought to represent the current state
of the art for news texts and is also integrated in GATE. Models using the PTB set are
available for both these taggers.

The accuracy of these general purpose English POS taggers is typically excellent
(97-98%) on texts similar to those on which the taggers have been trained (mostly news
articles). However, they are not suitable for microblogs and other short. noisy social
media content, where their accuracy declines to 70-75% [44].

Thus the TwitIE application in GATE now contains an adapted model for the Stan-
ford POS tagger, trained on PTB-tagged tweets. Extra tag labels have been added for
retweets, URLs, hashtags and user mentions. The Stanford POS tagger was re-trained
[44] using some hand-annotated tweets [4], the NPS IRC corpus [49], and news texts
(the Wall Street Journal part of the Penn Treebank [50]). The resulting model achieves
83.14% POS tagging accuracy, which is still below the 97% achieved on news content.

The most common mistakes (just over 27%) arise from words which are common in
general, but do not occur in the training data, indicating a need for a larger training POS-



tagged corpus of social media content. Another 27% of errors arise from slang words,
which are ubiquitous in social media content and are also often misspelled (e.g. LUVZ,
HELLA and 2night) and another 8% from typos. Many of these can be addressed using
normalisation (see Section 5.3). Close to 9% of errors arise from tokenisation mistakes
(e.g. joined words). Lastly, 9% of errors are words, to which a label may be reliably
assigned automatically, including URLs, hash tags, re-tweets and smileys, which we now
pre-tag automatically with regular expressions and lookup lists.

Another frequently made mistake is tagging proper noun (NN/NNP) – an observa-
tion also made by [4]. Therefore, we use GATE’s ANNIE gazetteer lists of personal
first-names and cities [6] and, in addition, a manually constructed a list of unambiguous
corporation and website names frequently-mentioned in the training data (e.g. YouTube,
Toyota).

Therefore, by combining normalisation, gazetteer name lookup, and regular expression-
based tagging of Twitter-specific POS tags, we achieve performance improvement from
83.14% accuracy to 86.93%. By generating additional 1.5M training tokens from auto-
matically annotated tweets using two pre-existing POS taggers (namely [4] and [51]), we
improve further the performance of the Twitter-adapted Stanford POS tagger to 90.54%
token accuracy. For further details on the evaluation see [44].

The Twitter-tailored Stanford POS Tagger is part of the GATE TwitIE plugin. It is
distributed with the specially trained model discussed above. In order to ensure the best
possible performance, it needs to be run after the TwitIE tokeniser and normaliser. Since
it is currently trained only on English content, it should only be run on tweets identified
as English by the TwitIE language identifier.

Figure 4 shows an example tweet, which has been tagged both without normalisation
(upper row of POS tags) and with tweet normalisation (the lower row of POS tags). The
word “Govt” is normalised to government, which is then tagged correctly as NN, instead
of NNP.

5.5. Stemming and Morphological Analysis

Another set of useful low-level processing components are stemmers and morphological
analysers. Stemmers produce the stem form of each word, e.g. “driving” and “drivers”
have the stem “drive”, whereas morphological analysis tends to produce the root/lemma
forms of the words and their affixes, e.g. “drive” and “driver” for the above examples,
with affixes “ing” and “s” respectively.

GATE provides a wrapper for the widely used, open-source Snowball stemmers,
which cover 11 European languages (Danish, Dutch, English, Finnish, French, German,
Italian, Norwegian, Portuguese, Russian, Spanish and Swedish) and makes them straight-
forward to combine with the other low-level linguistic components. The stemmers are
rule-based [52] and easy to modify, following the suffix-stripping approach of Porter.

The English morphological analyser in GATE is also rule-based, with the rule lan-
guage supporting rules and variables that can be used in regular expressions in the rules.
POS tags can taken into account if desired, depending on a configuration parameter.

5.6. Named Entity Recognition

Named entity recognition (NER) is difficult on user-generated content in general, and in
the microblog genre specifically, because of the reduced amount of contextual informa-



System Precision Recall F1
ANNIE 47% 83% 60%
TwitIE 77% 83% 80%
Ritter 73% 49% 59%

Table 3. Named Entity Recognition Performance

tion in short messages and a lack of curation of content by third parties (e.g. that done
by editors for newswire). In this section, we examine how the ANNIE NER component
from GATE [6] performs in comparison to a Twitter-specific approach, on a corpus of
2 400 tweets comprising 34 000 tokens [4]. Namely, we compare here against Ritter et
al. [4], who take a pipeline approach, performing first tokenisation and PoS tagging be-
fore using topic models to find named entities. For an in-depth comparison against other
approaches (including Stanford NER [53]) and error analysis, see [44].

Results are given in Table 3. We did not consider Percent-type entity annotations in
these evaluations because there were so few (3 in the whole corpus) and they were all
annotated correctly.

In the first experiment, we compared the default ANNIE pipeline against our TwitIE
pipeline, and found an absolute Precision increase of 30% – mainly with respect to
Date, Organization and in particular Person. Recall remained identical after TwitIE’s
customised tokenisation, normalisation, and POS tagging, which led to an increase of
20% in F1. Note that we did not consider the twitter-specific UserID annotation as a Per-
son annotation, since these were all 100% correct. Because the regular ANNIE does not
consider these, there were many false positive Person annotations as part of UserIDs.

Both ANNIE and TwitIE currently use the same named entity recognition grammars,
so part of our ongoing research is now on adapting these to social media. As we can see
microblog domain adaptation is critical to good NER. Thanks to adaptation in the earlier
components in TwitIE, we demonstrate a +30% absolute precision and +20% absolute
F1 performance increase. However, compared against state-of-the-art NER performance
on longer news content, an overall F1 score of 80% leaves significant amounts of missed
annotations and generates false positives.

6. Conclusion and Future Work

This chapter discussed the problem of extracting information from social media con-
tent and presented a number of state-of-the-art open-source GATE tools, comprising the
TwitIE IE pipeline. As can be seen from the evaluation results reported here, even though
significant inroads have been made into this challenging problem, there is still a signif-
icant gap in accuracy, when compared against performance on news texts, mostly due
to insufficient linguistic context and lack of training data. Next we discuss how further
improvements can be made.

One source of additional context is the geo-spatial information present in social me-
dia. A notable proportion comes explicitly geotagged [54], and studies suggest that it is
possible to infer the geo-locations of about half of the remaining such content [55]. So-
cial media also has at least a creation time as temporal context. None of this explicit and
implicit spatio-temporal (ST) metadata is currently exploited by the methods discussed



above, which is one promising avenue for future work. Our ongoing work here is on
evaluating and adapting the TIMEN approach [56] to social media content.

A second key major open issue is lack of sufficient amounts of training and evalu-
ation gold standard corpora of social media content. For example, there are fewer than
10,000 tweets hand-annotated with named entities, which hampers the development of
high-performance machine learning algorithms. Crowdsourcing has recently emerged as
a promising method for creating shared evaluation datasets [57]. Adapting these efforts
to the specifics of creating large-scale training and evaluation corpora is the second key
focus of future work on TwitIE.
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