

Nesta Working Paper No. 15/12

Political Futures Tracker - Technical Report

Diana Maynard
Ian Roberts
Mark A. Greenwood
Leon Derczynski
Kalina Bontcheva

Political Futures Tracker - Technical Report

Diana Maynard
University of Sheffield

 Ian Roberts
 University of Sheffield

Mark A. Greenwood

 University of Sheffield
Leon Derczynski

 University of Sheffield

Kalina Bontcheva
 University of Sheffield

Nesta Working Paper 15/12
July 2015

www.nesta.org.uk/wp15-12

Abstract

This report describes the Political Futures Tracker developed by the GATE team at
the University of Sheffield, consisting of a toolkit we have developed for social
media monitoring of tweets and other online material leading up to the 2015 UK
election. The toolkit includes data collection, semantic analysis, information
aggregation, search and visualisation tools, which allow analysts to dig deep into
the data and to perform complex queries over large volumes of data. The
infrastructure enables users to monitor incoming data streams from Twitter,
analyse the tweets and make the analysis results available for searching. It has
been applied to two scenarios: long-term monitoring of tweets by parliamentary
candidates (and responses to those tweets) throughout the election campaign,
and short-term intensive monitoring of tweets with particular hashtags during
the televised leaders' debates, in near-real time.

Keywords: Social Media analysis; NLP; General Election 2015; Twitter

The Nesta Working Paper Series is intended to make available early results of research undertaken or supported by
Nesta and its partners in order to elicit comments and suggestions for revisions and to encourage discussion and further
debate prior to publication (ISSN 2050-9820). © Year 2015 by the author(s). Short sections of text, tables and figures may
be reproduced without explicit permission provided that full credit is given to the source. The views expressed in this
working paper are those of the author(s) and do not necessarily represent those of Nesta.

http://www.nesta.org.uk/wp15-12
http://www.nesta.org.uk/wp15-12

Political Futures Tracker – Technical Report

Diana Maynard, Ian Roberts, Mark A. Greenwood,

Leon Derczynski, Kalina Bontcheva

1. Introduction

The Political Futures Tracker consists of a toolkit we have developed for social media

monitoring which combines a series of generic GATE

 tools inside a flexible architecture

that allows each component to be easily adapted to the specific social media monitoring

task and its domain. In particular, the framework includes semantic analysis, aggregation,

and search tools, which allow analysts to dig deep into the data and to perform complex

queries which do not just rely on surface information, plus the ability to make interesting

correlations between the data. The generic framework is described in Section 2, while the

topic and sentiment analysis tools are described in Section 3. Section 4 describes the

semantic analysis and linked open data component, while Section 5 describes the future

thinking component. Finally, in Section 6 we give some description of the visualisation

components to show the analysis of the data in interesting ways.

2. Infrastructure

One of the principal targets of the Political Futures Tracker project has been to develop

the infrastructure that allows us to monitor incoming data streams from Twitter, analyse

the tweets and make the analysis results available for searching in near-real-time. This

section describes the architecture we have created, and explains how we applied it to two

different scenarios -- long-term monitoring of tweets by parliamentary candidates (and

responses to those tweets) throughout the election campaign, and short-term intensive

monitoring of tweets with particular hashtags during the televised leaders' debates.

2.1 Basic Architecture

The live processing system is made up of several distinct components:

 The “collector” component receives tweets from Twitter via their streaming API

and forwards them to a reliable messaging queue (JBoss HornetQ). It also saves

the raw JSON of the tweets in backup files for later re-processing if necessary.

 The “processor” component consumes tweets from the message queue, processes

them with the GATE analysis pipeline and sends the annotated documents to

GATE Mimir for indexing.

 GATE Mimir receives the annotated tweets and indexes their text and annotation

data, making it available for searching after a short (configurable) delay.

Figure 1 shows a simple diagram of the architecture. Each component is described in

more detail below.

 GATE is the General Architecture for Textual Engineering. This is an open source tool for text analysis
developed by the Department of Computer Science at the University of Sheffield.

Figure 1 Simple architecture of the system

2.2 Collecting the Data

Twitter offers a set of streaming APIs that deliver tweets to consumers in real time as they

are posted. Of particular interest for our purposes is the statuses/filter API, which allows

you to specify certain constraints and then delivers all tweets (up to a maximum of

around 50 per second) that match those constraints. Various kinds of constraints are

supported, but the two that are of interest to us are:

 track: a textual filter that delivers all tweets that mention specified keywords

(typically hashtags)

 follow: a user ID filter that delivers all tweets by specified Twitter users, as well

as any tweet that is a retweet of, or a reply to, a tweet by one of the specified

users.

For the long-term monitoring use case, we use the YourNextMP service to assemble a list

of all known parliamentary candidates who have a Twitter account. We add to this list any

former MPs who are not standing for re-election, plus official political party accounts

such as @Conservatives, and accounts for prominent non-Westminster politicians (e.g.

the SNP and Plaid Cymru leaders, who are members of the Scottish Parliament and the

Welsh Assembly respectively), and follow this list of user IDs.

For the debates, we simply track relevant hashtags for each debate (#leadersdebate,

#BBCdebate), plus more general hashtags relating to the election (#GE2015,

#UKElection, etc.).

The collector component uses the Hosebird client, a Java library written by Twitter

themselves to simplify access to the streaming API. The Hosebird library handles the

complexity of authentication, long-lived HTTP connections, and backoff-and-retry

behaviour when the connection drops for any reason, so the actual collector logic is very

simple. When a tweet arrives on the stream, the collector parses the JSON to extract the

tweet ID, then packages the JSON into a message and sends it to the message queue,

tagged with its ID (for de-duplication purposes). In parallel, the collector writes the tweet

JSON to a backup file, so it is preserved for future reference (for example, following

improvements to the analysis pipeline during the project we were able to go back and re-

process previously-collected tweets with the new pipeline).

On top of the core collector library, we add a simple web front-end to configure the

collector with Twitter API credentials and details of which users and/or hashtags we want

to follow.

2.3 Processing the tweets

The processor component is a simple standalone Java application built using the Spring

Boot framework. Spring Boot handles the routine tasks, like parsing of command line

arguments, configuration of logging, and management of the application lifecycle, and

allows you to very quickly create applications based on the Spring Framework in a few

lines of code and configuration. In particular, it has support for the Java Message Service

(JMS), allowing us to create a message consumer application with a few Java

annotations.

We use GATE's Spring support to load the GATE processing pipeline and inject it into the

message listener created by Spring Boot. Command line parameters supply the locations

of the GATE processing pipeline, the queue to pull messages from, and the Mimir index

to receive the results. The processing pipeline itself is described in Section 3.

2.4 Indexing the results

The processor sends its annotated tweets to a GATE Mimir indexing server. Mimir

indexes the plain tweet text, structural metadata like sentence boundaries, hashtags and

@mentions, and the semantic annotations detected by the analysis pipeline, such as topic

mentions, sentiment expressions, and references to MPs from the previous parliament and

candidates for election. We also index document-level metadata such as the tweet author,

the timestamp of the tweet to a suitable level of granularity (the nearest hour for the long-

term collection, the nearest minute for the high-intensity debate analysis). Mentions of

candidates and former MPs are linked to a semantic knowledge base that provides

additional information such as their party affiliation and which constituency they are

standing in, and the constituencies are in turn linked to higher-level geographic regions,

allowing us to formulate complex queries such as “Find all positive sentiment

expressions about the 'UK economy' theme in tweets written by Labour candidates for

constituencies in Greater London.” By issuing a series of such queries, for each broad

theme, each party, each region, etc. we can generate useful visualizations like these.

Mimir builds index structures from the annotated data in memory, and performs a “sync

to disk'” at regular intervals to make the indexed tweets available for processing. The

interval between sync jobs determines how close to real-time the tweets become

searchable -- for the continuous processing of tweets by candidates, one sync per hour is

sufficient, but for the debates where we receive thousands of tweets per minute and want

to visualise the results as quickly as possible, we sync at least once every five minutes.

2.5 Robustness and scalability

The architecture is deliberately loosely coupled -- there is no direct dependency between

the collector and processor components, communication is mediated through the message

queue -- and the components can be distributed across different machines for higher

performance and/or robustness. If a processor fails, incoming tweets will simply stack up

in the message queue and will be dealt with when the processor restarts.

If the throughput is higher than a single processor can sustain then we can scale out

horizontally by starting up more processor instances, and the message queue will handle

the sharing out of messages among consumers without duplication. For extremely high

throughput, beyond that which a single Mimir can handle, each collector could post its

annotated tweets to a separate Mimir index, with searches handled through a federated

front-end index. However this has not proved necessary in our tests, since one Mimir

instance can easily sustain 10-15,000 tweets per minute, far more than the Twitter

streaming API is prepared to deliver.

On the collector side, it is possible to run several collector instances on different

machines, all delivering messages to the same queue. These could be clones, all

configured to stream the same tweets (to guard against the failure of a single collector), or

each collector could be set up to follow a different hashtag (to get around the rate limits

Twitter imposes on a single streaming connection). Either way, the message queue takes

care of filtering out duplicates so that each distinct tweet is only processed once. This was

a factor in the choice of HornetQ as the message broker, as it has native support for

duplicate message detection.

3. Analysing the Tweets

The application we have developed for text analysis consists of a pipeline of processing

resources developed in GATE. This consists of the following components:

 Named Entity Recognition (identifying Persons, Places, Organisations etc.) and

Linking (mapping these to their respective URIs in Wikipedia or other web-based

knowledge sources), using the pre-existing GATE applications TwitIE [1] and

YODIE [3] respectively.

 Topic Detection (detecting mentions in the text of major topics and subtopics, e.g.

environment, immigration etc. in various lexical forms, e.g. “fossil fuels” are an

indicator of an “environment” topic). The list of topics was derived from the set of

topics used to categorise documents on the gov.uk website.
**

 MP and Candidate recognition (detecting mentions of MPs and election

candidates in the tweet - by name or twitter handle - and linking them to their

respective URIs). This is performed via gazetteers.

 Author recognition (detecting who the author of the tweet is, and linking them to

the relevant URI in DBpedia). This is performed via grammar rules and gazetteer

matching.

 Sentiment Analysis (detecting whether the tweets convey sentiment and if so,

whether it is positive or negative, the strength of this sentiment, and whether the

statement is sarcastic or not; detecting also who is holding the opinion and what

topic the opinion is about, e.g. David Cameron (holder) is being positive

(sentiment) about the environment (opinion topic)). These tools were adapted

from those developed in [5,6], in order to relate specifically to the political tweets

scenario.

3.1 Topic Detection

Topic detection is performed by classifying terms according to the set of key themes used

on the .gov.uk web pages, such as “borders and immigration” “UK economy”,

“environment”, etc. To classify the terms, we first created sets of gazetteer lists - one for

each theme - and performed direct matching against these keywords. We extended this

via a set of JAPE rules in order to also match terms which were Noun Phrases and

matched a head or modifier word in a list. For example, if we have the term “jobs” in a

list as a head word, and we find the string “British jobs” in the text, annotated as a noun

phrase, we can perform a match, as shown below. This means that we do not have to pre-

specify every possible keyword in the text in advance, as this matching can be done on

the fly. Each topic matched gets allocated not only a theme (the topic matched) but also a

sub-theme which is based on the root form of the term (discovered via morphological

analysis). This enables variations of terms to be collected together (i.e. in our example, all

variations of “job2 would be grouped together - this is useful for later visualisations of

important topics and themes). Figure 2 shows a screenshot of a tweet containing the

phrase “british jobs”, which has been annotated as a topic with the theme “employment”.

We can see in this picture also that it has a subtheme “job”.

** https://www.gov.uk/government/policies

http://www.gov.uk/government/policies

timent detection

 Figure 2 Screenshot of a tweet containing a topic annotated with its theme

3.2 Sen

The idea behind the sentiment detection component is to find out what kinds of opinions

the MPs and candidates are expressing about the topics described above. This is in

contrast with most of the existing pre-election social media analysis tools, which are

focusing on public sentiment and which parties are becoming more or less favourable

(and ultimately attempting to predict the election results themselves).

The sentiment detection component is based on an adaptation of our core rule-based

sentiment analysis tools used in GATE. Adapted gazetteer lists of positive and negative

words, as well as other indicators such as swear words, emoticons, sarcastic indicators

and so on, are combined with a set of JAPE rules to determine the nature and strength of

the sentiment (positive or negative), who the opinion holder is, what topic the sentiment

refers to, and whether it is sarcastic or not. The rules for sentiment strength and score

combine a number of linguistic features such as adverbs, negation, conditional sentences,

questions, swear words, sarcasm indicators and so on. Further rules then attempt to link

the correct opinion holder and topic with the sentiments found, if more than one exist

within the same tweet or sentence. These essentially operate by chopping the tweet or

sentence into phrases and preferring closest matches within phrases, but considering also

the confines of any linguistic constraints such as conditionals. Figure 3 shows a

screenshot of an annotated tweet depicting positive sentiment towards the topic of

technology by MP Chi Onwurah, the author of the tweet.

Figure 3: Screenshot of a tweet annotated with sentiment

4. Semantic Analysis: Linking Open Data

While a number of interesting analyses can be performed over the raw processed data, the

scope for discovering interesting connections is greatly widened when the data is made

easily searchable. As mentioned in Section 2, GATE Mimir is used to index the

semantically annotated documents and to allow Linked Open Data to be used to restrict

searches. We use DBpedia as a rich source of knowledge to aggregate information from

the individual documents in interesting ways.

For the domain of UK politics, DBpedia contains a wealth of useful information. Every

current UK MP is represented, along with their constituency and the political party to

which they belong. For geographical information, we make use of the NUTS1 regions.

NUTS (Nomenclature of Territorial Units for Statistics) is a geocode standard for

referencing the subdivisions of the UK and other EU countries for statistical purposes,

and is represented in DBpedia. At the first level (NUTS1), there are 12 UK regions,

which we use in order to make geographical observations and visualisations when

constituency offers too fine-grained a distinction.

We have used data from a number of sources to annotate documents, and these same

sources were also used to enrich DBpedia with relevant and reliable domain information.

The main problem we had to overcome is that there is no single canonical source that

covers all existing MPs and candidates for the upcoming election. Instead, we currently

have three different sources of data that describe them; DBpedia, Twitter and

YourNextMP. All three sources provide URIs that can identify a single person, be that a

traditional URI such as provided by DBpedia, or a Twitter handle which can easily be

converted to a URI. Each MP and candidate may be described in all three data sources,

but will be contained in at least one. Where a person appears in more than one source, we

have asserted owl:sameAs properties between them in the ontology to ensure that,

regardless of which URI is used, all data we have about a person will be available for use

at both indexing time and during subsequent semantic searches and aggregation.

Fortunately, each constituency in the UK does have a URI within DBpedia, which we

have used as the canonical reference. Information about a constituency contains details of

the current MP, but not the candidates known to be standing in the forthcoming election.

We have added the information using the http://nesta.org.uk/property/candidate property

to link URIs for candidates from the YourNextMP dataset to the constituencies within

DBpedia.

While aggregation at the level of constituencies is interesting, more useful is to look at

the NUTS1 regions. Unfortunately while the regions themselves are present in DBpedia,

there is no reliable and consistent way of determining which region a constituency is a

member of, so we have again augmented DBpedia to provide this data using the

http://nesta.org.uk/property/partOf property to model the relationship. Another DBpedia

inconsistency is the fact that within the 12 NUTS1 regions there is no way of determing

the ID of the region (a three letter code); for some regions this is encoded using the

http://dbpedia.org/property/nutsCode property, while some use

http://dbpedia.org/property/nuts, and some do not include the code at all. For consistency

we have added the code to all 12 regions using the http://nesta.org.uk/property/nuts1code

property.

This data cleaning and linking of sources gives us a rich data set that can be used to

restrict search queries in many different ways to produce insightful analysis. For

example, Figure 4 shows a query executed in Mimir to find all tweets by Conservative

MPs or election candidates that mention something related to the UK economy, and an

example of a tweet found. Neither the fact that the tweet author (Richard Short) is a

Conservative MP, nor the words “UK economy”, are explicitly mentioned in the text: the

http://nesta.org.uk/property/candidate
http://nesta.org.uk/property/partOf
http://dbpedia.org/property/nutsCode
http://dbpedia.org/property/nuts
http://nesta.org.uk/property/nuts1code
http://nesta.org.uk/property/nuts1code

MP information comes from querying DBpedia, while the relationship between

"pensions" in the text and the economy comes from our semantic annotation.

igure 4.: Example of a Mimir

{Q,Q YO.lD tiill!loauthor_party=..Conservative Party"} OVER

{Topiic fheme=.._yeconomy"}

Search I

Richard Short

ToryShorty

+.!

With so many protected from Labour·s

pension raidl are they sure it will even generate £2.7bn #bbcsp

5. Future Thinking

The goal of the future thinking component is to identify phrases that may have a temporal

orientation, and try to guess what that orientation is. The end result is a

temporal_thinking annotation, optionally containing features for direction (either fwd or

bck) and for the degree, i.e. the temporal distance, which is a number typically between -

5 and +5, with negative numbers indicating a retrospective statement and smaller

numbers meaning not-so-distant thinking.

This is achieved by first identifying temporally-relevant terms. Such terms fall into

multiple categories. First, there are those words and phrases that are particularly relevant

to the election and to political discourse as a whole: these are domain specific. We

extracted these phrases from the documents provided by Nesta that had some highlighted

phrases in five political speeches, and then grew the list to cover other types of content.

Most of these were temporal expressions, or timexes, a broad class of phrases that all try

to reference some kind of calendar [7,4]. The expressions specific to the political domain

included phrases such as election, traditions, our lifetimes, the war, and the long run.

In addition, some indicators of future or past thinking that were not temporal expressions

were included; these were phrases specific to political speeches and soundbites, and

included expressions such as my parents and same old, which were indicators of past and

future thinking respectively.

Dates are also normalised using the GATE normaliser tools. The distance of the date from

the present gives it a different weight. They are divided into a few classes: before 2015;

before the election; until the end of next year; until 2020.

In addition, we use temporal signals to determine the temporal direction of the events and

ideas discussed. These temporal signals are conjunctions that place an argument in either

the future, past, or present. It is important to recognise these in order to spot shifts in

direction. They also serve as indicators of something temporal going on, in the absence of

other information. Temporal signals can be monosemous, having only a temporal

meaning, as in simultaneously or as soon as. They can also be polysemous, often having

a spatial interpretation too, e.g. before, in. Using data on the frequency of temporal

occurrences of signals [2], we matched instances of them in text, associated with a

direction where applicable.

Soft signals are also included. These are terms that are not necessarily temporal in the

general sense, but do indicate temporal thinking in what politicians say. This list includes

future-thinking terms e.g. our children, planning, the long term, and past-thinking terms,

e.g. then-current, the great war.

The final indicator used is the tenses of verb groups. The simple, perfect and conditional

past and future tenses are all used as indicators. Use of the present perfect tense

sometimes indicates past thinking, and so this is also taken into account.

Having identified these various indicators of temporal thinking, we use them to identify

phrases, by taking the sentence in which they occur, and then combine their meanings.

This works by first finding the overall direction of soft indicators and of temporal

expressions, and then using signals to see if the item talked about is actually described as

being temporally elsewhere. For example, although {\em planning for tomorrow} is fairly

future-thinking, before} planning for tomorrow is less so. Negation through not is also

taken into account. This gives the direction.

To give the degree of future thinking, the weights of relevant indicators are all combined.

The result is a number, where bigger numbers mean temporally further away / higher

confidence, zero means present, negative means past, and positive means future thinking.

The weights used in the final application are as follows:

 Future tense: +0.65

 Past tense: -0.45

 Present perfect: -0.5

 Future timex: +1.0

 Past timex: -1.0

 Pre-2015 date: -1.0

 Pre-election date: -0.15

 Near future date: +0.5

 Far future date: +1.0

 Very far future date: +1.5

 Future temporal signal: +0.4

 Past temporal signal: -1.0

 Future soft indicator: +0.3

 Past soft indicator: +0.3

6. Visualisation

This section focuses on the ways in which the Political Futures Tracker turns the raw data

collected and analysed in the previous phases into visualizations which allow us to

quickly see how the topic and sentiment of online discussion shifts in real time. In the

previous sections, we have explained how the data has been captured and then indexed

and linked to an ontology containing information about candidates and former MPs,

which allows us to formulate complex queries such as “Find all positive sentiment

expressions about the “UK economy” theme in tweets written by Labour candidates for

constituencies in Greater London”, which can be used to produce interesting

visualizations.

Building the visualizations for the Political Futures Tracker consists of two stages. First,

queries are developed to extract the raw statistics data from the indexed documents. In

the second phase, this raw data is used to drive interactive web based visualizations.

6.1 Exploding Queries

In general, visualizations are a good way to present statistics about the data. While a

single query, such as the example above, returns interesting information, this kind of

query is more for finding specific examples than for visualizing sentiment at a given time

point or changes over time. It is easy to see though, how such queries could be

generalised to gather statistics. For example we could issue two queries:

 Count all the positive sentiment expressions about the “UK economy” theme in

tweets written by Labour candidates for constituencies in Greater London;

 Count all the negative sentiment expressions about the “UK economy” theme in

tweets written by Labour candidates for constituencies in Greater London.

We could then use these to determine if the average sentiment is positive or negative.

While this is now allowing us to gather statistics rather than examples, further

generalization allows us to generate data covering more of the collected tweets and to

assemble more information within a single visualization. Essentially, we take such a

query and turn it into a template:

Count all the sentiment expressions about the theme in

tweets written by party candidates for constituencies in

region.

Each of these template slots can take on multiple values:

 sentiment: can be either positive or negative

 theme: we recognise 45 different political themes

 party: we focused on the seven main UK political parties

 region: the UK consists of 12 main regions (known as NUTS 1 regions)

In theory, we could run a query for every combination of values, which would give us

7,560 data points just for this one query. We refer to this as query explosion, as one query

can produce a vast number of data points. In reality, many of the themes are not talked

about often and so we have tended to focus on the top ten themes discussed over the

specific time point.

Time is the other aspect of the data that has not yet been discussed. In the run up to the

election, we were regularly looking at two forms of time periods. First, we looked at the

last week or month which allowed us to see the main themes rise and fall as the different

campaigns highlighted different topics. The same approach, albeit on a smaller time

scale, was used during the televised debates, where we generated statistics for the last

five minutes of the Twitter stream, to see how the public responded to the different

questions and speakers. The main point here is that each visualization concerned data

from a single time period. The second approach we used subdivided a time period into

short segments to give a clearer picture of changes in data over time. These usually

revolved around tracking the usage of a hashtag in the run up to a debate, and divided the

day into 5-minute blocks. Obviously, the more time periods there are, the more queries

that are required and the more data that is generated.

6.2 Building the Visualizations

Early in the project we produced a number of static graphs which helped to summarise

quickly the data being produced. While these static graphs were useful, there is still a

limit to the amount of data that can be displayed. Interactive visualizations are not only

more interesting for people to use, but also allow a much larger volume of data to be

presented quickly. We have produced a number of interactive visualizations which can be

accessed and explored with just a web browser.

Developing rich interactive web based visualization is made easy by the large

proliferation of JavaScript libraries designed specifically for the task. We used D3.js and

Leaflet to build all the visualizations produced in this project. These libraries not only

make it easy to display data in interesting ways, but also help to ensure that the data and

the visualization are kept separate. This separation is very useful as it allows us to

produce updated data rapidly (or as needed) without having to change the display code,

allowing the visualizations to change in response to the data. This was especially

important during the debates where the data was being regenerated every minute so that

changes in topic sentiment could be easily visualized.

7. Summary

This report describes the final version of the tools developed by the Sheffield team in

order to analyse and monitor political tweets leading up to the UK 2015 elections. The

toolkit consists of an overall framework, containing data collection, analysis, indexing,

search and visualisation components, and enables tweets to be monitored both offline and

in almost real time. They provide a flexible system which can also be adapted and

extended in future as necessary, for example to different domains or data.

References

[1] K. Bontcheva, L. Derczynski, A. Funk, M. A. Greenwood, D. Maynard, and N.

Aswani. TwitIE: An Open-Source Information Extraction Pipeline for Microblog Text. In

Proceedings of the International Conference on Recent Advances in Natural Language

Processing. Association for Computational Linguistics, 2013.

[2] L. Derczynski and R. Gaizauskas. A Corpus-based Study of Temporal Signals. In

Proceedings of the 6th Corpus Linguistics Conference, 2011.

[3] G. Gorrell, J. Petrak, K. Bontcheva, G. Emerson, and T. Declerck. Multilingual

resources and evaluation of knowledge modelling - v2. Technical Report D2.3.2,

Trendminer Project Deliverable, 2014.

[4] H. Llorens, L. Derczynski, R. J. Gaizauskas, and E. Saquete. TIMEN: An open

temporal expression normalisation resource. In Proceedings of the Eighth International

Conference on Language Resources and Evaluation (LREC), Istanbul, Turkey, pages

 3044–3051, 2012.

[5] D. Maynard, K. Bontcheva, and D. Rout. Challenges in developing opinion mining

tools for social media. In Proceedings of @NLP can u tag #usergeneratedcontent?!

Workshop at LREC 2012, Turkey, 2012.

[6] D. Maynard and M. A. Greenwood. Who cares about sarcastic tweets? Investigating

the impact of sarcasm on sentiment analysis. In Proceedings of LREC 2014, Reykjavik,

Iceland, 2014.

[7] J. Pustejovsky, B. Ingria, R. Sauri, J. Castano, J. Littman, and R. Gaizauskas. The

Specification Language TimeML. In The Language of Time: A Reader, pages 545–557.

Oxford University Press, 2004.

