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Abstract 
 

This report describes the Political Futures Tracker developed by the GATE team at 
the University of Sheffield, consisting of a toolkit we have developed for social 
media monitoring of tweets and other online material leading up to the 2015 UK 
election. The toolkit includes data collection, semantic analysis, information 
aggregation, search and visualisation tools, which allow analysts to dig deep into 
the data and to perform complex queries over large volumes of data. The 
infrastructure enables users to monitor incoming data streams from Twitter, 
analyse the tweets and make the analysis results available for searching. It has 
been applied to two scenarios: long-term monitoring of tweets by parliamentary 
candidates (and responses to those tweets) throughout the election campaign, 
and short-term intensive monitoring of tweets with particular hashtags during 
the televised leaders' debates, in near-real time. 
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1. Introduction 
 
The Political Futures Tracker consists of a toolkit we have developed for social media 

monitoring which combines a series of generic GATE

 tools inside a flexible architecture 

that allows each component to be easily adapted to the specific social media monitoring 

task and its domain. In particular, the framework includes semantic analysis, aggregation, 

and search tools, which allow analysts to dig deep into the data and to perform complex 

queries which do not just rely on surface information, plus the ability to make interesting 

correlations between the data. The generic framework is described in Section 2, while the 

topic and sentiment analysis tools are described in Section 3. Section 4 describes the 

semantic analysis and linked open data component, while Section 5 describes the future 

thinking component. Finally, in Section 6 we give some description of the visualisation 

components to show the analysis of the data in interesting ways. 

 
2. Infrastructure 

 
One of the principal targets of the Political Futures Tracker project has been to develop 

the infrastructure that allows us to monitor incoming data streams from Twitter, analyse 

the tweets and make the analysis results available for searching in near-real-time. This 

section describes the architecture we have created, and explains how we applied it to two 

different scenarios -- long-term monitoring of tweets by parliamentary candidates (and 

responses to those tweets) throughout the election campaign, and short-term intensive 

monitoring of tweets with particular hashtags during the televised leaders' debates. 

 
2.1 Basic Architecture 

 
The live processing system is made up of several distinct components: 

 
 The “collector” component receives tweets from Twitter via their streaming API 

and forwards them to a reliable messaging queue (JBoss HornetQ). It also saves 

the raw JSON of the tweets in backup files for later re-processing if necessary. 

 The “processor” component consumes tweets from the message queue, processes 

them with the GATE analysis pipeline and sends the annotated documents to 

GATE Mimir for indexing. 

 GATE Mimir receives the annotated tweets and indexes their text and annotation 

data, making it available for searching after a short (configurable) delay. 
 

 
 

Figure 1 shows a simple diagram of the architecture. Each component is described in 

more detail below. 

                                                           
 GATE is the General Architecture for Textual Engineering. This is an open source tool for text analysis 
developed by the Department of Computer Science at the University of Sheffield. 



 

 
Figure 1 Simple architecture of the system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2 Collecting the Data 

 
Twitter offers a set of streaming APIs that deliver tweets to consumers in real time as they 

are posted. Of particular interest for our purposes is the statuses/filter API, which allows 

you to specify certain constraints and then delivers all tweets (up to a maximum of 

around 50 per second) that match those constraints. Various kinds of constraints are 

supported, but the two that are of interest to us are: 

 
 track: a textual filter that delivers all tweets that mention specified keywords 

(typically hashtags) 

 follow: a user ID filter that delivers all tweets by specified Twitter users, as well 

as any tweet that is a retweet of, or a reply to, a tweet by one of the specified 

users. 
 
 

For the long-term monitoring use case, we use the YourNextMP service to assemble a list 

of all known parliamentary candidates who have a Twitter account. We add to this list any 

former MPs who are not standing for re-election, plus official political party accounts 

such as @Conservatives, and accounts for prominent non-Westminster politicians (e.g. 

the SNP and Plaid Cymru leaders, who are members of the Scottish Parliament and the 

Welsh Assembly respectively), and follow this list of user IDs. 

 
For the debates,  we simply track  relevant  hashtags  for each  debate (#leadersdebate, 

#BBCdebate),   plus   more   general   hashtags   relating   to   the   election   (#GE2015, 

#UKElection, etc.). 

 
The collector component uses the Hosebird client, a Java library written by Twitter 

themselves to simplify access to the streaming API. The Hosebird library handles the 



complexity of authentication, long-lived HTTP connections, and backoff-and-retry 

behaviour when the connection drops for any reason, so the actual collector logic is very 

simple. When a tweet arrives on the stream, the collector parses the JSON to extract the 

tweet ID, then packages the JSON into a message and sends it to the message queue, 

tagged with its ID (for de-duplication purposes). In parallel, the collector writes the tweet 

JSON to a backup file, so it is preserved for future reference (for example, following 

improvements to the analysis pipeline during the project we were able to go back and re- 

process previously-collected tweets with the new pipeline). 

 
On top of the core collector library, we add a simple web front-end to configure the 

collector with Twitter API credentials and details of which users and/or hashtags we want 

to follow. 
 

 
 

2.3 Processing the tweets 

 
The processor component is a simple standalone Java application built using the Spring 

Boot framework. Spring Boot handles the routine tasks, like parsing of command line 

arguments, configuration of logging, and management of the application lifecycle, and 

allows you to very quickly create applications based on the Spring Framework in a few 

lines of code and configuration. In particular, it has support for the Java Message Service 

(JMS),  allowing  us  to  create  a  message  consumer  application  with  a  few  Java 

annotations. 

 
We use GATE's Spring support to load the GATE processing pipeline and inject it into the 

message listener created by Spring Boot. Command line parameters supply the locations 

of the GATE processing pipeline, the queue to pull messages from, and the Mimir index 

to receive the results. The processing pipeline itself is described in Section 3. 
 

 
 

2.4 Indexing the results 

 
The processor sends  its  annotated  tweets  to  a  GATE Mimir indexing server.  Mimir 

indexes the plain tweet text, structural metadata like sentence boundaries, hashtags and 

@mentions, and the semantic annotations detected by the analysis pipeline, such as topic 

mentions, sentiment expressions, and references to MPs from the previous parliament and 

candidates for election. We also index document-level metadata such as the tweet author, 

the timestamp of the tweet to a suitable level of granularity (the nearest hour for the long- 

term collection, the nearest minute for the high-intensity debate analysis). Mentions of 

candidates and former MPs are linked to a semantic knowledge base that provides 

additional information such as their party affiliation and which constituency they are 

standing in, and the constituencies are in turn linked to higher-level geographic regions, 

allowing  us  to  formulate  complex  queries  such  as  “Find  all  positive  sentiment 

expressions about the 'UK economy' theme in tweets written by Labour candidates for 

constituencies in Greater London.” By issuing a series of such queries, for each broad 

theme, each party, each region, etc. we can generate useful visualizations like these.



 

Mimir builds index structures from the annotated data in memory, and performs a “sync 

to disk'” at regular intervals to make the indexed tweets available for processing. The 

interval between sync jobs determines how close to real-time the tweets become 

searchable -- for the continuous processing of tweets by candidates, one sync per hour is 

sufficient, but for the debates where we receive thousands of tweets per minute and want 

to visualise the results as quickly as possible, we sync at least once every five minutes. 
 
 

2.5 Robustness and scalability 

 
The architecture is deliberately loosely coupled -- there is no direct dependency between 

the collector and processor components, communication is mediated through the message 

queue -- and the components can be distributed across different machines for higher 

performance and/or robustness. If a processor fails, incoming tweets will simply stack up 

in the message queue and will be dealt with when the processor restarts. 

 
If the throughput is higher than a single processor can sustain then we can scale out 

horizontally by starting up more processor instances, and the message queue will handle 

the sharing out of messages among consumers without duplication. For extremely high 

throughput, beyond that which a single Mimir can handle, each collector could post its 

annotated tweets to a separate Mimir index, with searches handled through a federated 

front-end index. However this has not proved necessary in our tests, since one Mimir 

instance can easily sustain 10-15,000 tweets per minute, far more than the Twitter 

streaming API is prepared to deliver. 

 
On  the  collector  side,  it  is  possible  to  run  several  collector  instances  on  different 

machines, all delivering messages to the same queue. These could be clones, all 

configured to stream the same tweets (to guard against the failure of a single collector), or 

each collector could be set up to follow a different hashtag (to get around the rate limits 

Twitter imposes on a single streaming connection). Either way, the message queue takes 

care of filtering out duplicates so that each distinct tweet is only processed once. This was 

a factor in the choice of HornetQ as the message broker, as it has native support for 

duplicate message detection. 
 

 
 

3. Analysing the Tweets 

 
The application we have developed for text analysis consists of a pipeline of processing 

resources developed in GATE. This consists of the following components: 

 
 Named Entity Recognition (identifying Persons, Places, Organisations etc.) and 

Linking (mapping these to their respective URIs in Wikipedia or other web-based 

knowledge sources), using the pre-existing GATE applications TwitIE [1] and 

YODIE [3] respectively. 

 Topic Detection (detecting mentions in the text of major topics and subtopics, e.g. 



environment, immigration etc. in various lexical forms, e.g. “fossil fuels” are an 

indicator of an “environment” topic). The list of topics was derived from the set of 

topics used to categorise documents on the gov.uk website.
**

 

 MP  and  Candidate  recognition  (detecting  mentions  of  MPs  and  election 

candidates in the tweet - by name or twitter handle - and linking them to their 

respective URIs). This is performed via gazetteers. 

 Author recognition (detecting who the author of the tweet is, and linking them to 

the relevant URI in DBpedia). This is performed via grammar rules and gazetteer 

matching. 

 Sentiment Analysis (detecting whether the tweets convey sentiment and if so, 

whether it is positive or negative, the strength of this sentiment, and whether the 

statement is sarcastic or not; detecting also who is holding the opinion and what 

topic the opinion is about, e.g. David Cameron (holder) is being positive 

(sentiment) about the environment (opinion topic)). These tools were adapted 

from those developed in [5,6], in order to relate specifically to the political tweets 

scenario. 
 
 
 
3.1 Topic Detection 

 
Topic detection is performed by classifying terms according to the set of key themes used 

on the .gov.uk web pages, such as “borders and immigration” “UK economy”, 

“environment”, etc. To classify the terms, we first created sets of gazetteer lists - one for 

each theme - and performed direct matching against these keywords. We extended this 

via a set of JAPE rules in order to also match terms which were Noun Phrases and 

matched a head or modifier word in a list. For example, if we have the term “jobs” in a 

list as a head word, and we find the string “British jobs” in the text, annotated as a noun 

phrase, we can perform a match, as shown below. This means that we do not have to pre- 

specify every possible keyword in the text in advance, as this matching can be done on 

the fly. Each topic matched gets allocated not only a theme (the topic matched) but also a 

sub-theme which is based on the root form of the term (discovered via morphological 

analysis). This enables variations of terms to be collected together (i.e. in our example, all 

variations of “job2 would be grouped together - this is useful for later visualisations of 

important topics and themes). Figure   2   shows a screenshot of a tweet containing the 

phrase “british jobs”, which has been annotated as a topic with the theme “employment”. 

We can see in this picture also that it has a subtheme “job”. 
 
 
 
 
 
 
 
 
 

** https://www.gov.uk/government/policies 

http://www.gov.uk/government/policies


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
timent detection 

 Figure 2 Screenshot of a tweet containing a topic annotated with its theme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

3.2 Sen 
 
The idea behind the sentiment detection component is to find out what kinds of opinions 

the MPs and candidates are expressing about the topics described above. This is in 

contrast with most of the existing pre-election social media analysis tools, which are 

focusing on public sentiment and which parties are becoming more or less favourable 

(and ultimately attempting to predict the election results themselves). 

 
The sentiment detection component is based on an adaptation of our core rule-based 

sentiment analysis tools used in GATE. Adapted gazetteer lists of positive and negative 

words, as well as other indicators such as swear words, emoticons, sarcastic indicators 

and so on, are combined with a set of JAPE rules to determine the nature and strength of 

the sentiment (positive or negative), who the opinion holder is, what topic the sentiment 

refers to, and whether it is sarcastic or not. The rules for sentiment strength and score 

combine a number of linguistic features such as adverbs, negation, conditional sentences, 

questions, swear words, sarcasm indicators and so on. Further rules then attempt to link 

the correct opinion holder and topic with the sentiments found, if more than one exist 

within the same tweet or sentence. These essentially operate by chopping the tweet or 

sentence into phrases and preferring closest matches within phrases, but considering also 

the  confines  of  any  linguistic  constraints  such  as  conditionals.  Figure  3  shows  a 



screenshot  of  an  annotated  tweet  depicting  positive  sentiment  towards  the  topic  of 

technology by MP Chi Onwurah, the author of the tweet. 
 
 
 

Figure 3: Screenshot of a tweet annotated with sentiment 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Semantic Analysis: Linking Open Data 
 
While a number of interesting analyses can be performed over the raw processed data, the 

scope for discovering interesting connections is greatly widened when the data is made 

easily searchable. As mentioned in Section 2, GATE Mimir is used to index the 

semantically annotated documents and to allow Linked Open Data to be used to restrict 

searches. We use DBpedia as a rich source of knowledge to aggregate information from 

the individual documents in interesting ways. 

 
For the domain of UK politics, DBpedia contains a wealth of useful information. Every 



current UK MP is represented, along with their constituency and the political party to 

which they belong. For geographical information, we make use of the NUTS1 regions. 

NUTS (Nomenclature of Territorial Units for Statistics) is a geocode standard for 

referencing the subdivisions of the UK and other EU countries for statistical purposes, 

and is represented in DBpedia. At the first level (NUTS1), there are 12 UK regions, 

which we use in order to make geographical observations and visualisations when 

constituency offers too fine-grained a distinction. 

 
We have used data from a number of sources to annotate documents, and these same 

sources were also used to enrich DBpedia with relevant and reliable domain information. 

The main problem we had to overcome is that there is no single canonical source that 

covers all existing MPs and candidates for the upcoming election. Instead, we currently 

have three different sources of data that describe them; DBpedia, Twitter and 

YourNextMP. All three sources provide URIs that can identify a single person, be that a 

traditional URI such as provided by DBpedia, or a Twitter handle which can easily be 

converted to a URI. Each MP and candidate may be described in all three data sources, 

but will be contained in at least one. Where a person appears in more than one source, we 

have asserted owl:sameAs properties between them in the ontology to ensure that, 

regardless of which URI is used, all data we have about a person will be available for use 

at both indexing time and during subsequent semantic searches and aggregation. 

 
Fortunately, each constituency in the UK does have a URI within DBpedia, which we 

have used as the canonical reference. Information about a constituency contains details of 

the current MP, but not the candidates known to be standing in the forthcoming election. 

We have added the information using the  http://nesta.org.uk/property/candidate property 

to link URIs for candidates from the YourNextMP dataset to the constituencies within 

DBpedia. 

 
While aggregation at the level of constituencies is interesting, more useful is to look at 

the NUTS1 regions. Unfortunately while the regions themselves are present in DBpedia, 

there is no reliable and consistent way of determining which region a constituency is a 

member of, so we have again augmented DBpedia to provide this data using the 

http://nesta.org.uk/property/partOf property to model the relationship. Another DBpedia 

inconsistency is the fact that within the 12 NUTS1 regions there is no way of determing 

the ID of the region (a three letter code); for some regions this is encoded using the 

http://dbpedia.org/property/nutsCode property, while some use 

http://dbpedia.org/property/nuts, and some do not include the code at all. For consistency 

we have added the code to all 12 regions using the  http://nesta.org.uk/property/nuts1code 

property. 

 
This data cleaning and linking of sources gives us a rich data set that can be used to 

restrict  search  queries  in  many  different  ways  to  produce  insightful  analysis.  For 

example, Figure 4 shows a query executed in Mimir to find all tweets by Conservative 

MPs or election candidates that mention something related to the UK economy, and an 

example of a tweet found. Neither the fact that the tweet author (Richard Short) is a 

Conservative MP, nor the words “UK economy”, are explicitly mentioned in the text: the 

http://nesta.org.uk/property/candidate
http://nesta.org.uk/property/partOf
http://dbpedia.org/property/nutsCode
http://dbpedia.org/property/nuts
http://nesta.org.uk/property/nuts1code
http://nesta.org.uk/property/nuts1code


MP   information   comes   from   querying   DBpedia,   while   the   relationship   between 

"pensions" in the text and the economy comes from our semantic annotation. 
 
 

igure 4.: Example of a Mimir 
 

 
 
 
 
 
 
 
 
 

{Q,Q YO.lD tiill!loauthor_party=..Conservative Party"} OVER 

{Topiic fheme=.._yeconomy"} 
 
 
 
 
 
 

Search  I 
 
 
 
 

Richard Short 

ToryShorty 

+.! 

 

 

With so many protected  from Labour·s 

pension raidl are they sure it will even generate £2.7bn  #bbcsp 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Future Thinking 

 

The goal of the future thinking component is to identify phrases that may have a temporal 

orientation,   and   try   to   guess   what   that   orientation   is.   The   end   result   is   a 

temporal_thinking annotation, optionally containing features for direction (either fwd or 

bck) and for the degree, i.e. the temporal distance, which is a number typically between - 

5  and  +5,  with  negative  numbers  indicating  a  retrospective  statement  and  smaller 

numbers meaning not-so-distant thinking. 
 
This is achieved by first identifying temporally-relevant terms. Such terms fall into 

multiple categories. First, there are those words and phrases that are particularly relevant 

to the election and to political discourse as a whole: these are domain specific. We 

extracted these phrases from the documents provided by Nesta that had some highlighted 

phrases in five political speeches, and then grew the list to cover other types of content. 

Most of these were temporal expressions, or timexes, a broad class of phrases that all try 

to reference some kind of calendar [7,4]. The expressions specific to the political domain 

included phrases such as election, traditions, our lifetimes, the war, and the long run. 

In addition, some indicators of future or past thinking that were not temporal expressions 

were included; these were phrases specific to political speeches and soundbites, and 

included expressions such as my parents and same old, which were indicators of past and 

future thinking respectively. 

 
Dates are also normalised using the GATE normaliser tools. The distance of the date from 

the present gives it a different weight. They are divided into a few classes: before 2015; 

before the election; until the end of next year; until 2020. 

 
In addition, we use temporal signals to determine the temporal direction of the events and 

ideas discussed. These temporal signals are conjunctions that place an argument in either 

the future, past, or present. It is important to recognise these in order to spot shifts in 

direction. They also serve as indicators of something temporal going on, in the absence of 

other information. Temporal signals can be monosemous, having only a temporal 

meaning, as in simultaneously or as soon as. They can also be polysemous, often having 

a spatial interpretation too, e.g. before, in. Using data on the frequency of temporal 

occurrences of signals [2], we matched instances of them in text, associated with a 

direction where applicable. 

 
Soft signals are also included. These are terms that are not necessarily temporal in the 

general sense, but do indicate temporal thinking in what politicians say. This list includes 

future-thinking terms e.g. our children, planning, the long term, and past-thinking terms, 

e.g. then-current, the great war. 

 
The final indicator used is the tenses of verb groups. The simple, perfect and conditional 

past  and  future  tenses  are  all  used  as  indicators.  Use  of  the  present  perfect  tense 

sometimes indicates past thinking, and so this is also taken into account. 

 
Having identified these various indicators of temporal thinking, we use them to identify 

phrases, by taking the sentence in which they occur, and then combine their meanings. 

This works by first finding the overall direction of soft indicators and of temporal 

expressions, and then using signals to see if the item talked about is actually described as 



being temporally elsewhere. For example, although {\em planning for tomorrow} is fairly 

future-thinking,   before} planning for tomorrow is less so. Negation through not is also 

taken into account. This gives the direction. 

 
To give the degree of future thinking, the weights of relevant indicators are all combined. 

The result is a number, where bigger numbers mean temporally further away / higher 

confidence, zero means present, negative means past, and positive means future thinking. 

The weights used in the final application are as follows: 

 
 Future tense: +0.65 

 Past tense: -0.45 

 Present perfect: -0.5 

 Future timex: +1.0 

 Past timex: -1.0 

 Pre-2015 date: -1.0 

 Pre-election date: -0.15 

 Near future date: +0.5 

 Far future date: +1.0 

 Very far future date: +1.5 

 Future temporal signal: +0.4 

 Past temporal signal: -1.0 

 Future soft indicator: +0.3 

 Past soft indicator: +0.3 
 

 
 

6. Visualisation 

 
This section focuses on the ways in which the Political Futures Tracker turns the raw data 

collected and  analysed  in  the previous  phases into  visualizations  which  allow us  to 

quickly see how the topic and sentiment of online discussion shifts in real time. In the 

previous sections, we have explained how the data has been  captured and then indexed 

and linked to an ontology containing information about candidates and former MPs, 

which allows us to formulate complex queries such as “Find all positive sentiment 

expressions about the “UK economy” theme in tweets written by Labour candidates for 

constituencies in Greater London”, which can be used to produce interesting 

visualizations. 

 
Building the visualizations for the Political Futures Tracker consists of two stages. First, 

queries are developed to extract the raw statistics data from the indexed documents. In 

the second phase, this raw data is used to drive interactive web based visualizations. 

 
6.1 Exploding Queries 

 
In general, visualizations are a good way to present statistics about the data. While a 

single query, such as the example above, returns interesting information, this kind of 

query is more for finding specific examples than for visualizing sentiment at a given time 



point  or  changes  over  time.  It  is  easy  to  see  though,  how  such  queries  could  be 

generalised to gather statistics. For example we could issue two queries: 

 
 Count all the positive sentiment expressions about the “UK economy” theme in 

tweets written by Labour candidates for constituencies in Greater London; 

 Count all the negative sentiment expressions about the “UK economy” theme in 

tweets written by Labour candidates for constituencies in Greater London. 

 
We could then use these to determine if the average sentiment is positive or negative. 

While this is now allowing us to gather statistics rather than examples, further 

generalization allows us to generate data covering more of the collected tweets and to 

assemble more information within a single visualization. Essentially, we take such a 

query and turn it into a template: 

 
Count all the sentiment expressions about the theme in 

tweets written by party candidates for constituencies in 

region. 
 

 
 

Each of these template slots can take on multiple values: 

 sentiment: can be either positive or negative 

 theme: we recognise 45 different political themes 

 party: we focused on the seven main UK political parties 

 region: the UK consists of 12 main regions (known as NUTS 1 regions) 

 
In theory, we could run a query for every combination of values, which would give us 

7,560 data points just for this one query. We refer to this as query explosion, as one query 

can produce a vast number of data points. In reality, many of the themes are not talked 

about often and so we have tended to focus on the top ten themes discussed over the 

specific time point. 

 
Time is the other aspect of the data that has not yet been discussed. In the run up to the 

election, we were regularly looking at two forms of time periods. First, we looked at the 

last week or month which allowed us to see the main themes rise and fall as the different 

campaigns highlighted different topics. The same approach, albeit on a smaller time 

scale, was used during the televised debates, where we generated statistics for the last 

five minutes of the Twitter stream, to see how the public responded to the different 

questions and speakers. The main point here is that each visualization concerned data 

from a single time period. The second approach we used subdivided a time period into 

short segments to give a clearer picture of changes in data over time. These usually 

revolved around tracking the usage of a hashtag in the run up to a debate, and divided the 

day into 5-minute blocks. Obviously, the more time periods there are, the more queries 

that are required and the more data that is generated. 
 

 



6.2 Building the Visualizations 
 

Early in the project we produced a number of static graphs which helped to summarise 

quickly the data being produced. While these static graphs were useful, there is still a 

limit to the amount of data that can be displayed. Interactive visualizations are not only 

more interesting for people to use, but also allow a much larger volume of data to be 

presented quickly. We have produced a number of interactive visualizations which can be 

accessed and explored with just a web browser. 

 
Developing  rich  interactive  web  based  visualization  is  made  easy  by  the  large 

proliferation of JavaScript libraries designed specifically for the task. We used D3.js and 

Leaflet to build all the visualizations produced in this project. These libraries not only 

make it easy to display data in interesting ways, but also help to ensure that the data and 

the visualization are kept separate. This separation is very useful as it allows us to 

produce updated data rapidly (or as needed) without having to change the display code, 

allowing the visualizations to change in response to the data. This was especially 

important during the debates where the data was being regenerated every minute so that 

changes in topic sentiment could be easily visualized. 
 

 
 

7. Summary 

 
This report describes the final version of the tools developed by the Sheffield team in 

order to analyse and monitor political tweets leading up to the UK 2015 elections. The 

toolkit consists of an overall framework, containing data collection, analysis, indexing, 

search and visualisation components, and enables tweets to be monitored both offline and 

in almost real time. They provide a flexible system which can also be adapted and 

extended in future as necessary, for example to different domains or data. 
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